Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = sterol C24-methyltransferase (24-SMT)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 12170 KiB  
Article
Characterization of Subcellular Dynamics of Sterol Methyltransferases Clarifies Defective Cell Division in smt2 smt3, a C-24 Ethyl Sterol-Deficient Mutant of Arabidopsis
by Daisaku Ohta, Ayaka Fuwa, Yuka Yamaroku, Kazuki Isobe, Masatoshi Nakamoto, Atsushi Okazawa, Takumi Ogawa, Kazuo Ebine, Takashi Ueda, Pierre Mercier and Hubert Schaller
Biomolecules 2024, 14(7), 868; https://doi.org/10.3390/biom14070868 - 19 Jul 2024
Cited by 2 | Viewed by 1730
Abstract
An Arabidopsis sterol mutant, smt2 smt3, defective in sterolmethyltransferase2 (SMT2), exhibits severe growth abnormalities. The loss of C-24 ethyl sterols, maintaining the biosynthesis of C-24 methyl sterols and brassinosteroids, suggests specific roles of C-24 ethyl sterols. We characterized the subcellular localizations of [...] Read more.
An Arabidopsis sterol mutant, smt2 smt3, defective in sterolmethyltransferase2 (SMT2), exhibits severe growth abnormalities. The loss of C-24 ethyl sterols, maintaining the biosynthesis of C-24 methyl sterols and brassinosteroids, suggests specific roles of C-24 ethyl sterols. We characterized the subcellular localizations of fluorescent protein-fused sterol biosynthetic enzymes, such as SMT2-GFP, and found these enzymes in the endoplasmic reticulum during interphase and identified their movement to the division plane during cytokinesis. The mobilization of endoplasmic reticulum-localized SMT2-GFP was independent of the polarized transport of cytokinetic vesicles to the division plane. In smt2 smt3, SMT2-GFP moved to the abnormal division plane, and unclear cell plate ends were surrounded by hazy structures from SMT2-GFP fluorescent signals and unincorporated cellulose debris. Unusual cortical microtubule organization and impaired cytoskeletal function accompanied the failure to determine the cortical division site and division plane formation. These results indicated that both endoplasmic reticulum membrane remodeling and cytokinetic vesicle transport during cytokinesis were impaired, resulting in the defects of cell wall generation. The cell wall integrity was compromised in the daughter cells, preventing the correct determination of the subsequent cell division site. We discuss the possible roles of C-24 ethyl sterols in the interaction between the cytoskeletal network and the plasma membrane. Full article
(This article belongs to the Special Issue Sterol Biosynthesis and Function in Organisms)
Show Figures

Figure 1

26 pages, 9134 KiB  
Article
Virtual Screening of Alkaloid and Terpenoid Inhibitors of SMT Expressed in Naegleria sp.
by Jason Abraham, Neha Chauhan and Supriyo Ray
Molecules 2022, 27(17), 5727; https://doi.org/10.3390/molecules27175727 - 5 Sep 2022
Cited by 3 | Viewed by 2694
Abstract
The pathogenic form of thermophilic Naegleria sp. i.e., Naegleria fowleri, also known as brain eating amoeba, causes primary amoebic encephalitis (PAM) with a >97% fatality rate. To date, there are no specific drugs identified to treat this disease specifically. The present antimicrobial [...] Read more.
The pathogenic form of thermophilic Naegleria sp. i.e., Naegleria fowleri, also known as brain eating amoeba, causes primary amoebic encephalitis (PAM) with a >97% fatality rate. To date, there are no specific drugs identified to treat this disease specifically. The present antimicrobial combinatorial chemotherapy is hard on many patients, especially children. Interestingly, Naegleria fowleri has complex lipid biosynthesis pathways like other protists and also has a strong preference to utilize absorbed host lipids for generating energy. The ergosterol biosynthesis pathway provides a unique drug target opportunity, as some of the key enzymes involved in this pathway are absent in humans. Sterol 24-C Methyltransferase (SMT) is one such enzyme that is not found in humans. To select novel inhibitors for this enzyme, alkaloids and terpenoids inhibitors were screened and tested against two isozymes of SMT identified in N. gruberi (non-pathogenic) as well as its homolog found in yeast, i.e., ERG6. Five natural product derived inhibitors i.e., Cyclopamine, Chelerythrine, Berberine, Tanshinone 2A, and Catharanthine have been identified as potential drug candidates based on multiple criteria including binding affinity, ADME scores, absorption, and, most importantly, its ability to cross the blood brain barrier. This study provides multiple leads for future drug exploration against Naegleria fowleri. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Graphical abstract

20 pages, 2359 KiB  
Article
Simvastatin Resistance of Leishmania amazonensis Induces Sterol Remodeling and Cross-Resistance to Sterol Pathway and Serine Protease Inhibitors
by Thais Tenorio Soares Fujii, Pollyanna Stephanie Gomes, Rubens Lima do Monte-Neto, Daniel Claudio de Oliveira Gomes, Marc Ouellette, Eduardo Caio Torres-Santos, Valter Viana Andrade-Neto and Herbert Leonel de Matos Guedes
Microorganisms 2022, 10(2), 398; https://doi.org/10.3390/microorganisms10020398 - 9 Feb 2022
Cited by 2 | Viewed by 2870
Abstract
The sterol biosynthesis pathway of Leishmania spp. is used as a pharmacological target; however, available information about the mechanisms of the regulation and remodeling of sterol-related genes is scarce. The present study investigated compensatory mechanisms of the sterol biosynthesis pathway using an inhibitor [...] Read more.
The sterol biosynthesis pathway of Leishmania spp. is used as a pharmacological target; however, available information about the mechanisms of the regulation and remodeling of sterol-related genes is scarce. The present study investigated compensatory mechanisms of the sterol biosynthesis pathway using an inhibitor of HMG-CoA reductase (simvastatin) and by developing drug-resistant parasites to evaluate the impact on sterol remodeling, cross-resistance, and gene expression. Simvastatin-resistant L. amazonensis parasites (LaSimR) underwent reprogramming of sterol metabolism manifested as an increase in cholestane- and stigmastane-based sterols and a decrease in ergostane-based sterols. The levels of the transcripts of sterol 24-C-methyltransferase (SMT), sterol C14-α-demethylase (C14DM), and protease subtilisin (SUB) were increased in LaSimR. LaSimR was cross-resistance to ketoconazole (a C14DM inhibitor) and remained sensitive to terbinafine (an inhibitor of squalene monooxygenase). Sensitivity of the LaSimR mutant to other antileishmanial drugs unrelated to the sterol biosynthesis pathway, such as trivalent antimony and pentamidine, was similar to that of the wild-type strain; however, LaSimR was cross-resistant to miltefosine, general serine protease inhibitor N-p-tosyl-l-phenylalanine chloromethyl ketone (TPCK), subtilisin-specific inhibitor 4-[(diethylamino)methyl]-N-[2-(2-methoxyphenyl)ethyl]-N-(3R)-3-pyrrolidinyl-benzamide dihydrochloride (PF-429242), and tunicamycin. The findings on the regulation of the sterol pathway can support the development of drugs and protease inhibitors targeting this route in parasites. Full article
Show Figures

Figure 1

14 pages, 4141 KiB  
Article
Inhibition of Phytosterol Biosynthesis by Azasterols
by Sylvain Darnet, Laetitia B B Martin, Pierre Mercier, Franz Bracher, Philippe Geoffroy and Hubert Schaller
Molecules 2020, 25(5), 1111; https://doi.org/10.3390/molecules25051111 - 2 Mar 2020
Cited by 11 | Viewed by 5594
Abstract
Inhibitors of enzymes in essential cellular pathways are potent probes to decipher intricate physiological functions of biomolecules. The analysis of Arabidopsis thaliana sterol profiles upon treatment with a series of azasterols reveals a specific in vivo inhibition of SMT2, a plant sterol-C-methyltransferase acting [...] Read more.
Inhibitors of enzymes in essential cellular pathways are potent probes to decipher intricate physiological functions of biomolecules. The analysis of Arabidopsis thaliana sterol profiles upon treatment with a series of azasterols reveals a specific in vivo inhibition of SMT2, a plant sterol-C-methyltransferase acting as a branch point between the campesterol and sitosterol biosynthetic segments in the pathway. Side chain azasteroids that modify sitosterol homeostasis help to refine its particular function in plant development. Full article
(This article belongs to the Special Issue Natural Sterols)
Show Figures

Graphical abstract

24 pages, 6136 KiB  
Review
Synthesis and Biological Activity of Sterol 14α-Demethylase and Sterol C24-Methyltransferase Inhibitors
by David J. Leaver
Molecules 2018, 23(7), 1753; https://doi.org/10.3390/molecules23071753 - 17 Jul 2018
Cited by 24 | Viewed by 11217
Abstract
Sterol 14α-demethylase (SDM) is essential for sterol biosynthesis and is the primary molecular target for clinical and agricultural antifungals. SDM has been demonstrated to be a valid drug target for antiprotozoal therapies, and much research has been focused on using SDM inhibitors to [...] Read more.
Sterol 14α-demethylase (SDM) is essential for sterol biosynthesis and is the primary molecular target for clinical and agricultural antifungals. SDM has been demonstrated to be a valid drug target for antiprotozoal therapies, and much research has been focused on using SDM inhibitors to treat neglected tropical diseases such as human African trypanosomiasis (HAT), Chagas disease, and leishmaniasis. Sterol C24-methyltransferase (24-SMT) introduces the C24-methyl group of ergosterol and is an enzyme found in pathogenic fungi and protozoa but is absent from animals. This difference in sterol metabolism has the potential to be exploited in the development of selective drugs that specifically target 24-SMT of invasive fungi or protozoa without adversely affecting the human or animal host. The synthesis and biological activity of SDM and 24-SMT inhibitors are reviewed herein. Full article
Show Figures

Graphical abstract

17 pages, 1064 KiB  
Review
Steroidal Triterpenes: Design of Substrate-Based Inhibitors of Ergosterol and Sitosterol Synthesis
by Jialin Liu and William David Nes
Molecules 2009, 14(11), 4690-4706; https://doi.org/10.3390/molecules14114690 - 18 Nov 2009
Cited by 28 | Viewed by 20412
Abstract
This article reviews the design and study, in our own laboratory and others, of new steroidal triterpenes with a modified lanosterol or cycloartenol frame. These compounds, along with a number of known analogs with the cholestane skeleton, have been evaluated as reversible or [...] Read more.
This article reviews the design and study, in our own laboratory and others, of new steroidal triterpenes with a modified lanosterol or cycloartenol frame. These compounds, along with a number of known analogs with the cholestane skeleton, have been evaluated as reversible or irreversible inhibitors of sterol C24-methyltransferase (SMT) from plants, fungi and protozoa. The SMT catalyzes the C24-methylation reaction involved with the introduction of the C24-methyl group of ergosterol and the C24-ethyl group of sitosterol, cholesterol surrogates that function as essential membrane inserts in many photosynthetic and non-photosynthetic eukaryotic organisms. Sterol side chains constructed with a nitrogen, sulfur, bromine or fluorine atom, altered to possess a methylene cyclopropane group, or elongated to include terminal double or triple bonds are shown to exhibit different in vitro activities toward the SMT which are mirrored in the inhibition potencies detected in the growth response of treated cultured human and plant cells or microbes. Several of the substrate-based analogs surveyed here appear to be taxaspecific compounds acting as mechanism-based inactivators of the SMT, a crucial enzyme not synthesized by animals. Possible mechanisms for the inactivation process and generation of novel products catalyzed by the variant SMTs are discussed. Full article
(This article belongs to the Special Issue Triterpenes and Triterpenoids 2013)
Show Figures

Graphical abstract

Back to TopTop