Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = stenotic bifurcation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 8936 KiB  
Article
A Fluid–Structure Interaction Analysis to Investigate the Influence of Magnetic Fields on Plaque Growth in Stenotic Bifurcated Arteries
by Kaleem Iqbal, Eugenia Rossi di Schio, Muhammad Adnan Anwar, Mudassar Razzaq, Hasan Shahzad, Paolo Valdiserri, Giampietro Fabbri and Cesare Biserni
Dynamics 2024, 4(3), 572-591; https://doi.org/10.3390/dynamics4030030 - 18 Jul 2024
Cited by 3 | Viewed by 1770
Abstract
A finite element method is employed to examine the impact of a magnetic field on the development of plaque in an artery with stenotic bifurcation. Consistent with existing literature, blood flow is characterized as a Newtonian fluid that is stable, incompressible, biomagnetic, and [...] Read more.
A finite element method is employed to examine the impact of a magnetic field on the development of plaque in an artery with stenotic bifurcation. Consistent with existing literature, blood flow is characterized as a Newtonian fluid that is stable, incompressible, biomagnetic, and laminar. Additionally, it is assumed that the arterial wall is linearly elastic throughout. The hemodynamic flow within a bifurcated artery, influenced by an asymmetric magnetic field, is described using the arbitrary Lagrangian–Eulerian (ALE) method. This technique incorporates the fluid–structure interaction coupling. The nonlinear system of partial differential equations is discretized using a stable P2P1 finite element pair. To solve the resulting nonlinear algebraic equation system, the Newton-Raphson method is employed. Magnetic fields are numerically modeled, and the resulting displacement, velocity magnitude, pressure, and wall shear stresses are analyzed across a range of Reynolds numbers (Re = 500, 1000, 1500, and 2000). The numerical analysis reveals that the presence of a magnetic field significantly impacts both the displacement magnitude and the flow velocity. In fact, introducing a magnetic field leads to reduced flow separation, an expanded recirculation area near the stenosis, as well as an increase in wall shear stress. Full article
Show Figures

Figure 1

18 pages, 4556 KiB  
Article
Comparison of Manual versus Semi-Automatic Segmentations of the Stenotic Carotid Artery Bifurcation
by Benjamin Csippa, Zsuzsanna Mihály, Zsófia Czinege, Márton Bence Németh, Gábor Halász, György Paál and Péter Sótonyi
Appl. Sci. 2021, 11(17), 8192; https://doi.org/10.3390/app11178192 - 3 Sep 2021
Cited by 4 | Viewed by 2974
Abstract
Background: The image reconstruction of stenotic carotid bifurcation can be managed by medical practitioners and non-medical investigators with semi-automatic or manual segmentation. The outcome of blood flow simulations may vary because of a single mean voxel difference along the examined section, possibly more [...] Read more.
Background: The image reconstruction of stenotic carotid bifurcation can be managed by medical practitioners and non-medical investigators with semi-automatic or manual segmentation. The outcome of blood flow simulations may vary because of a single mean voxel difference along the examined section, possibly more in the stenotic lesions, which can lead to conflicting results regarding other research findings. The aim of our project is computational geometry reconstruction for blood flow simulations to make it suitable for comparison with plaque image analysis performed by commercially available software. In this paper, a comparison is made between the manual and semi-automatic segmentations performed by non-medical and medical investigators, respectively. Methods: 30 patients were classified into three homogeneous groups. Our group classification was based on the following parameters: plaque calcification score, thickness, extent, remodeling and plaque localization. The images in the first group were segmented individually by medical practitioners and experienced non-medical investigators, the second group was segmented collectively, and the last group was segmented individually again. Cross-sections along the centerline were extracted, then geometrical and statistical analyses were performed. Exploratory flow simulations were carried out on two patients to showcase the effect of geometrical differences on the hemodynamic flow field. Results: The largest centerline-averaged voxel difference between the medical and non-medical investigators occurred in the first group with a positive difference of 1.16 voxels. In the second and third groups, the average voxel difference decreased to 0.65 and 0.75, respectively. The example case from the first group showed that the difference in maximum wall shear stress in the middle of the stenosis is 30% with an average voxel difference of 1.73. Meanwhile, it can decrease to 4% when the average voxel difference is 0.64 for the example case from the third group. Conclusions: A collective review of the medical images should preceded the manual segmentations before applying them in computational simulations in order to ensure a proper comparison with plaque image analysis. Especially complex pathology such as calcifications should be segmented under medical supervision or after specific training. Non-significant differences in the segmentation can lead to significant differences in the computed flow field. Full article
(This article belongs to the Special Issue Applications of Image Processing in Anatomy)
Show Figures

Figure 1

18 pages, 32924 KiB  
Article
Multi-Plane Ultrafast Compound 3D Strain Imaging: Experimental Validation in a Carotid Bifurcation Phantom
by Stein Fekkes, Anne E. C. M. Saris, Jan Menssen, Maartje M. Nillesen, Hendrik H. G. Hansen and Chris L. De Korte
Appl. Sci. 2018, 8(4), 637; https://doi.org/10.3390/app8040637 - 20 Apr 2018
Cited by 9 | Viewed by 4837
Abstract
Strain imaging of the carotid artery (CA) has demonstrated to be a technique capable of identifying plaque composition. This study assesses the performance of volumetric strain imaging derived from multi-plane acquisitions with a single transducer, with and without displacement compounding. These methods were [...] Read more.
Strain imaging of the carotid artery (CA) has demonstrated to be a technique capable of identifying plaque composition. This study assesses the performance of volumetric strain imaging derived from multi-plane acquisitions with a single transducer, with and without displacement compounding. These methods were compared to a reference method using two orthogonally placed transducers. A polyvinyl alcohol phantom was created resembling a stenotic CA bifurcation. A realistic pulsatile flow was imposed on the phantom, resulting in fluid pressures inducing 10% strains. Two orthogonally aligned linear array transducers were connected to two Verasonics systems and fixed in a translation stage. For 120 equally spaced elevational positions, ultrasound series were acquired for a complete cardiac cycle and synchronized using a trigger. Each series consisted of ultrafast plane-wave acquisitions at 3 alternating angles. Inter-frame displacements were estimated using a 3D cross-correlation-based tracking algorithm. Horizontal displacements were acquired using the single probe lateral displacement estimate, the single probe compounded by axial displacement estimates obtained at angles of 19.47 and −19.47 degrees, and the dual probe registered axial displacement estimate. After 3D tracking, least squares strain estimations were performed to compare compressive and tensile principal strains in 3D for all methods. The compounding technique clearly outperformed the zero-degree method for the complete cardiac cycle and resulted in more accurate 3D strain estimates. Full article
(This article belongs to the Special Issue Ultrafast Ultrasound Imaging)
Show Figures

Figure 1

Back to TopTop