Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = steel–copper bimetal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7801 KiB  
Article
Effect of Step Size on the Formability of Al/Cu Bimetallic Sheets in Single Point Incremental Sheet Forming
by Krzysztof Żaba, Sandra Puchlerska, Łukasz Kuczek, Tomasz Trzepieciński and Piotr Maj
Materials 2023, 16(1), 367; https://doi.org/10.3390/ma16010367 - 30 Dec 2022
Cited by 14 | Viewed by 2507
Abstract
Single Point Incremental Forming (SPIF) is an unconventional forming process that is suitable for prototype production and small lot production due to the economical tooling cost, short lead time, and the ability to create symmetrical and asymmetrical complex geometries without the use of [...] Read more.
Single Point Incremental Forming (SPIF) is an unconventional forming process that is suitable for prototype production and small lot production due to the economical tooling cost, short lead time, and the ability to create symmetrical and asymmetrical complex geometries without the use of expensive dies. This article presents the effect of the step size Δz of a forming tool made of 145Cr6 tool steel on the formability and maximum forming angle, mechanical properties, hardness, surface roughness, microstructure and texture of bimetallic Al/Cu sheets. Experiments were conducted at a constant rotational speed and feed rate, with the use of rapeseed oil as a lubricant. The tests were carried out with the use of a forming tool on both sides of the bimetallic sheet. The shape and dimensions of the formed elements are determined by non-contact optical 3D scanning. It has been proved that an increase in the step size Δz affects the deterioration of the surface quality of the specimens (an increase in the Ra parameter from 0.2 μm to approximately 3 μm for the step size of 1.2 mm), while a small step size down Δz favours the geometric stability of the samples. With increasing step size (at Δx = Δy = const.), the drawpiece wall continually thinned until the material fractured. Based on the results, it was shown that increasing the step size Δz over 1.1 mm causes cracking of the drawpieces. Furthermore, greater thinning of the Al/Cu sheet was observed in the range of step size Δz between 0.7 and 1.0 mm for aluminum side and step size Δz ≤ 0.6 mm and Δz ≥ 1.1 mm for copper side. It was also found that the mechanical properties of the bimetal sheet decreased as a result of incremental forming. The greatest decrease in strength and ductility was recorded for a pitch of 1.2 mm. Strength decreased from 230 MPa (for sheet in initial state) to approximately 80 MPa, elongation from 12% to approximately 8.5%, and hardness from 120 HV10 for Cu and 60 HV10 for Al to approximately 30 HV10 for both layers. Full article
(This article belongs to the Special Issue Advances in Welding of Aluminum Matrix Composites)
Show Figures

Figure 1

13 pages, 1784 KiB  
Article
Study of the EDM Process of Bimetallic Materials Using a Composite Electrode Tool
by Timur Rizovich Ablyaz, Evgeny Sergeevich Shlykov, Karim Ravilevich Muratov and Alexander Valentinovich Zhurin
Materials 2022, 15(3), 750; https://doi.org/10.3390/ma15030750 - 19 Jan 2022
Cited by 9 | Viewed by 2653
Abstract
New types of profile products make complex use of bimetals. These materials possess a set of properties such as strength, corrosion resistance, thermal conductivity, heat resistance, wear resistance. For the processing of such products, it is advisable to use electrophysical processing methods, one [...] Read more.
New types of profile products make complex use of bimetals. These materials possess a set of properties such as strength, corrosion resistance, thermal conductivity, heat resistance, wear resistance. For the processing of such products, it is advisable to use electrophysical processing methods, one of which is the technology of copy-piercing electrical discharge machining (EDM). Currently, EDM is one of the most common methods for processing products from modern bimetal materials. An urgent task is to study the EDM process of bimetallic materials. The aim of the work was to increase the efficiency and accuracy of the EDM process of bimetallic products using electrode-tools with different physical and mechanical properties. Bimetal—weld coated steel backing, base material—09G2S steel, surfacing material—M1 copper were used. The processing of the bimetallic workpiece was carried out on an Electronica Smart CNC copy-piercing EDM machine. EI used graphite, copper, and composite. A theoretical model was developed that allows calculation of the amount of removal of bimetallic material of steel–copper depending on the EDM modes and the ET (electrode tool) material. During the processing of the steel layer, regardless of the EI material, microcracks were formed along the grain boundaries, and during the processing of the copper layer, enlarged holes resulted. Full article
(This article belongs to the Special Issue Surface Processing of Steels: Materials, Techniques and Applications)
Show Figures

Figure 1

9 pages, 7570 KiB  
Article
Effect of Two-Stage Cooling on the Microstructure and Tribological Properties of Steel–Copper Bimetals
by Yuanyuan Kang, Guowei Zhang, Zhaojie Wang, Hong Xu and An Wan
Materials 2022, 15(2), 492; https://doi.org/10.3390/ma15020492 - 10 Jan 2022
Cited by 5 | Viewed by 1680
Abstract
In this paper, the solid–liquid composite method is used to prepare the steel–copper bimetal sample through two-stage cooling process (forced air cooling and oil cooling). The relationship between the different microstructures and friction properties of the bimetal copper layer is clarified. The results [...] Read more.
In this paper, the solid–liquid composite method is used to prepare the steel–copper bimetal sample through two-stage cooling process (forced air cooling and oil cooling). The relationship between the different microstructures and friction properties of the bimetal copper layer is clarified. The results show that: the friction and wear parameters are 250 N, the speed is 1500 r/min (3.86 m/s), the friction coefficient fluctuates in the range of 0.06–0.1, and the lowest point is 0.06 at 700 °C. The microstructure of the copper layer was α-Cu, δ, Cu3P, and Pb phases, and Pb was free between α-Cu dendrites. When the solidification temperature is 900 °C, the secondary dendrite of α-Cu develops. With the decrease temperature, the growth of primary and secondary dendrites gradually tends to balance at 700 °C. During the wear process, Pb forms a self-lubricating film uniformly distributed on the surface of α-Cu, and the Cu3P and δ phases are distributed in the wear mark to increase α-Cu wear resistance. Full article
Show Figures

Figure 1

20 pages, 7135 KiB  
Article
A Layer-Dependent Analytical Model for Printability Assessment of Additive Manufacturing Copper/Steel Multi-Material Components by Directed Energy Deposition
by Wenqi Zhang, Baopeng Zhang, Haifeng Xiao, Huanqing Yang, Yun Wang and Haihong Zhu
Micromachines 2021, 12(11), 1394; https://doi.org/10.3390/mi12111394 - 13 Nov 2021
Cited by 13 | Viewed by 2751
Abstract
Copper/steel bimetal, one of the most popular and typical multi-material components (MMC), processes excellent comprehensive properties with the high strength of steel and the high thermal conductivity of copper alloy. Additive manufacturing (AM) technology is characterized by layer-wise fabrication, and thus is especially [...] Read more.
Copper/steel bimetal, one of the most popular and typical multi-material components (MMC), processes excellent comprehensive properties with the high strength of steel and the high thermal conductivity of copper alloy. Additive manufacturing (AM) technology is characterized by layer-wise fabrication, and thus is especially suitable for fabricating MMC. However, considering both the great difference in thermophysical properties between copper and steel and the layer-based fabrication character of the AM process, the optimal processing parameters will vary throughout the deposition process. In this paper, we propose an analytical calculation model to predict the layer-dependent processing parameters when fabricating the 07Cr15Ni5 steel on the CuCr substrate at the fixed layer thickness (0.3 mm) and hatching space (0.3 mm). Specifically, the changes in effective thermal conductivity and specific heat capacity with the layer number, as well as the absorption rate and catchment efficiency with the processing parameters are considered. The parameter maps predicted by the model have good agreement with the experimental results. The proposed analytical model provides new guidance to determine the processing windows for novel multi-material components, especially for the multi-materials whose physical properties are significantly different. Full article
Show Figures

Figure 1

10 pages, 6970 KiB  
Article
A Method for Characterising the Influence of Casting Parameters on the Metallurgical Bonding of Copper and Steel Bimetals
by Simon Kammerloher, Julika Hoyer, Philipp Lechner, Tim Mittler and Wolfram Volk
Materials 2021, 14(20), 6223; https://doi.org/10.3390/ma14206223 - 19 Oct 2021
Cited by 5 | Viewed by 2156
Abstract
Traditional casting technology offers two mayor drawbacks towards research activities. On the one hand, time and resources needed for every casting are rather high. The mould has to be able to withstand the high temperatures introduced by the melt and provide cooling for [...] Read more.
Traditional casting technology offers two mayor drawbacks towards research activities. On the one hand, time and resources needed for every casting are rather high. The mould has to be able to withstand the high temperatures introduced by the melt and provide cooling for the cast part. Preparation and installation of measuring equipment therefore takes time. Additionally, due to the high mass of the mould when compared to the cast part, parameter variations are rather limited in their resulting effect on the temperature-time profile being one of the most prominent factors regarding cast quality. Especially when pouring by hand, variations in casting times and rates superimpose effects created intentionally. Therefore, a different process was advanced and evaluated, allowing to minimise some of the drawbacks mentioned before. The key idea is to drastically reduce casting size to the dimensions of one specimen and to apply a highly automated production route. As such, a mirror furnace was modified as to allow the processing of melt. Due to the specimens size, an adaption of mechanical testing equipment was performed and evaluated. As an example, copper-iron bimetal specimens were examined by light microscopy, micro hardness testing, nanoindentation as well as tensile and torsion testing. As the results were consistent, the newly introduced method can be applied successfully in casting research. This allows for highly reproducible results, reducing the uncertainty of temperature measurements of a specimen due to the distance between them. The possibility of separating influencing variables like maximum temperature and cooling rate allows an analysis of the casting process, which would require different moulds to do so in traditional casting methods. The next steps will be directed at a broader variety of metals processed and at a direct comparison between the new process route and traditional casting technology. Full article
(This article belongs to the Special Issue Characterization Methods for Metal Cast Processes)
Show Figures

Figure 1

14 pages, 6485 KiB  
Article
Atomistic Simulations and Experimental Investigations of the Diffusion Behavior of Steel/ZCuPb20Sn5 Bimetals
by Mingjie Wang, Guowei Zhang, Hong Xu and Yufei Zhang
Coatings 2020, 10(6), 549; https://doi.org/10.3390/coatings10060549 - 8 Jun 2020
Cited by 4 | Viewed by 3291
Abstract
A hybrid verification method consisting of experiments and molecular dynamics simulations was implemented to investigate the diffusion behaviour of steel/ZCuPb20Sn5 bimetals. The effects of different carbon steels (Q235 steel, 45 steel, and T8 steel), pouring temperatures, and holding times on their microstructures and [...] Read more.
A hybrid verification method consisting of experiments and molecular dynamics simulations was implemented to investigate the diffusion behaviour of steel/ZCuPb20Sn5 bimetals. The effects of different carbon steels (Q235 steel, 45 steel, and T8 steel), pouring temperatures, and holding times on their microstructures and mechanical properties were studied to obtain the optimum process parameters. The experimental results indicated that the pouring temperature and holding time played an imperative role in improving the shear strength of the steel/copper bimetallic composite. The highest bonding strength of all the steel/copper bimetallic composites was obtained at 1523 K and the holding time of 40 min. Moreover, the carbon steel of 45 steel with a ZCuPb20Sn5 interface exhibited the highest bonding strength because of the appropriate pearlite content along with the preferable structure and micro-hardness for the considered diffusion width and bonding strength. Meanwhile, the diffusion distance of copper atoms in the carbon steel matrix was smaller than that of iron atoms in the ZCuPb20Sn5 matrix. In the simulation results, the diffusion coefficient of Cu atoms was smaller than that of Fe atoms, but the diffusion distance of Fe atoms in the Cu bulk was larger than that of Cu atoms in the Fe bulk; this showed a significant agreement with the experimental result. Full article
Show Figures

Figure 1

Back to TopTop