Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = staple carbon fibres

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 17622 KiB  
Article
Multiscale Characterisation of Staple Carbon Fibre-Reinforced Polymers
by Lucian Zweifel, Julian Kupski, Clemens Dransfeld, Baris Caglar, Stephan Baz, Damian Cessario, Götz T. Gresser and Christian Brauner
J. Compos. Sci. 2023, 7(11), 465; https://doi.org/10.3390/jcs7110465 - 6 Nov 2023
Cited by 3 | Viewed by 3764
Abstract
The aim of this study was to characterise the microstructural organisation of staple carbon fibre-reinforced polymer composites and to investigate their mechanical properties. Conventionally, fibre-reinforced materials are manufactured using continuous fibres. However, discontinuous fibres are crucial for developing sustainable structural second-life applications. Specifically, [...] Read more.
The aim of this study was to characterise the microstructural organisation of staple carbon fibre-reinforced polymer composites and to investigate their mechanical properties. Conventionally, fibre-reinforced materials are manufactured using continuous fibres. However, discontinuous fibres are crucial for developing sustainable structural second-life applications. Specifically, aligning staple fibres into yarn or tape-like structures enables similar usage to continuous fibre-based products. Understanding the effects of fibre orientation, fibre length, and compaction on mechanical performance can facilitate the fibres’ use as standard engineering materials. This study employed methods ranging from microscale to macroscale, such as image analysis, X-ray computed tomography, and mechanical testing, to quantify the microstructural organisations resulting from different alignment processing methods. These results were compared with the results of mechanical tests to validate and comprehend the relationship between fibre alignment and strength. The results show a significant influence of alignment on fibre orientation distribution, fibre volume fraction, tortuosity, and mechanical properties. Furthermore, different characteristics of the staple fibre tapes were identified and attributed to kinematic effects during movement of the sliver alignment unit, resulting in varying tape thicknesses and fuzzy surfaces. Full article
(This article belongs to the Topic Advanced Carbon Fiber Reinforced Composite Materials)
Show Figures

Figure 1

18 pages, 7614 KiB  
Article
First Conclusions on Damage Behaviour of Recycled Carbon Staple Fibre Yarn Using X-ray and Acoustic Emission Techniques
by Christian Becker, Joachim Hausmann, Janna Krummenacker and Nicole Motsch-Eichmann
Materials 2023, 16(13), 4842; https://doi.org/10.3390/ma16134842 - 5 Jul 2023
Cited by 1 | Viewed by 2030
Abstract
This paper presents the first results on the characterisation of the damage behaviour of recycled carbon fibre (rCF) rovings manufactured into unidirectionally (UD) reinforced plates. In the first step, the mechanical properties of several material combinations were determined by mechanical tests (tensile, flexural, [...] Read more.
This paper presents the first results on the characterisation of the damage behaviour of recycled carbon fibre (rCF) rovings manufactured into unidirectionally (UD) reinforced plates. In the first step, the mechanical properties of several material combinations were determined by mechanical tests (tensile, flexural, compression). This proves the usability of the material for load-bearing structures. For example, a tensile modulus of up to 80 GPa and a tensile strength of 800 MPa were measured. Subsequently, the fracture surface was analysed by scanning electron microscopy (SEM) to characterise the fibre–matrix adhesion and to obtain first indications of possible failure mechanisms. Despite the high mechanical properties, poor fibre–matrix adhesion was found for all matrix systems. In situ X-ray microscopy tests were then performed on smaller specimens under predefined load levels as transverse tensile and bending tests. The results provide further predictions of the failure behaviour and can be compared to the previous test results. The three-dimensional scan reconstruction results were used to visualise the failure behaviour of the staple fibres in order to detect fibre pull-out and fibre or inter-fibre failure and to draw initial conclusions about the damage behaviour in comparison to conventional fibre composites. In particular, a benign failure behaviour in the transverse tensile test was demonstrated with this procedure. In addition, first concepts and tests for the integration of AE analysis into the in situ setup of the X-ray microscope are presented. Full article
(This article belongs to the Special Issue Damage Analysis and Reliability Assessment for Composite Materials)
Show Figures

Figure 1

26 pages, 8196 KiB  
Review
Health Benefits of Cereal Grain- and Pulse-Derived Proteins
by Jenny Bouchard, Maneka Malalgoda, Joanne Storsley, Lovemore Malunga, Thomas Netticadan and Sijo Joseph Thandapilly
Molecules 2022, 27(12), 3746; https://doi.org/10.3390/molecules27123746 - 10 Jun 2022
Cited by 52 | Viewed by 9234
Abstract
Pulses and whole grains are considered staple foods that provide a significant amount of calories, fibre and protein, making them key food sources in a nutritionally balanced diet. Additionally, pulses and whole grains contain many bioactive compounds such as dietary fibre, resistant starch, [...] Read more.
Pulses and whole grains are considered staple foods that provide a significant amount of calories, fibre and protein, making them key food sources in a nutritionally balanced diet. Additionally, pulses and whole grains contain many bioactive compounds such as dietary fibre, resistant starch, phenolic compounds and mono- and polyunsaturated fatty acids that are known to combat chronic disease. Notably, recent research has demonstrated that protein derived from pulse and whole grain sources contains bioactive peptides that also possess disease-fighting properties. Mechanisms of action include inhibition or alteration of enzyme activities, vasodilatation, modulation of lipid metabolism and gut microbiome and oxidative stress reduction. Consumer demand for plant-based proteins has skyrocketed primarily based on the perceived health benefits and lower carbon footprint of consuming foods from plant sources versus animal. Therefore, more research should be invested in discovering the health-promoting effects that pulse and whole grain proteins have to offer. Full article
Show Figures

Figure 1

Back to TopTop