Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = spintronic THz emitters

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2792 KB  
Article
Enhancement of Spin Wave Transmission Through Antiferromagnet in Pt/NiO/CoFeB Heterostructure
by Wei Shi, Yangkai Wang, Zhixin Liu, Yilin Pei, Qiuping Huang, Zhengping Fu, Jianlin Wang and Yalin Lu
Magnetochemistry 2025, 11(2), 7; https://doi.org/10.3390/magnetochemistry11020007 - 22 Jan 2025
Cited by 2 | Viewed by 2204
Abstract
A significant enhancement of the spin current transmission through the antiferromagnetic insulating material NiO in Pt/NiO/CoFeB heterostructures was observed in this work. The ultrafast spin currents excited by laser pulses were injected into the Pt layers after passing through the NiO layers, and [...] Read more.
A significant enhancement of the spin current transmission through the antiferromagnetic insulating material NiO in Pt/NiO/CoFeB heterostructures was observed in this work. The ultrafast spin currents excited by laser pulses were injected into the Pt layers after passing through the NiO layers, and then transient charge currents were generated via the inverse spin Hall effect (ISHE), leading to a terahertz (THz) emission from the structure. The emitted THz signals were measured using electro-optic sampling with a ZnTe crystal. Thin NiO layers remarkably enhanced the THz signal amplitude, suggesting high spin transfer efficiency in NiO, and lighting a direction to ameliorate the spintronic THz emitter. The variable temperature measurements showed the amplitude had a maximum near the Néel temperature (TN) of the NiO layer with a specific thickness. The results of phase difference suggested that the coherent evanescent spin wave-mediated transmission had a contribution below the TN of the NiO layer, while the thermal magnon-mediated transmission existed at all temperatures. Our results not only achieve an enhancement in the spintronic THz source but also provide a THz spectroscopic method to investigate the dynamics of the ultrafast spintronic phenomenon. Full article
(This article belongs to the Special Issue Spin Waves in Magnonic Crystals and Hybrid Ferromagnetic Structures)
Show Figures

Figure 1

16 pages, 814 KB  
Article
Theoretical Models for Performance Analysis of Spintronic THz Emitters
by Yingshu Yang, Stefano Dal Forno and Marco Battiato
Photonics 2024, 11(8), 730; https://doi.org/10.3390/photonics11080730 - 5 Aug 2024
Cited by 2 | Viewed by 3050
Abstract
The terahertz (THz) region of the electromagnetic spectrum, spanning from 0.1 to 10 THz, offers unique opportunities for imaging, spectroscopy, and communication applications. However, the potential of THz technologies has been limited by the availability of efficient and versatile THz emitters. Spintronic THz [...] Read more.
The terahertz (THz) region of the electromagnetic spectrum, spanning from 0.1 to 10 THz, offers unique opportunities for imaging, spectroscopy, and communication applications. However, the potential of THz technologies has been limited by the availability of efficient and versatile THz emitters. Spintronic THz emitters (STEs), leveraging the ultrafast dynamics of electron spins in magnetic materials, have emerged as a promising solution to this challenge. STEs offer significant advantages, including broad bandwidth, high power output, and room-temperature operation, positioning them at the forefront of THz technology development. Despite these advances, understanding the operational principles and improving the performance of STEs remain areas of active research. This review focuses on the theoretical models that describe the behavior of STEs, aiming to provide a comprehensive overview of the underlying physics and suggest directions for future enhancements. Through a detailed examination of these models, the review seeks to clarify the basics of the physics driving STE performance and highlight innovative strategies for their optimization and application expansion. Full article
(This article belongs to the Special Issue Terahertz Photonics: Recent Advances and Future Perspectives)
Show Figures

Figure 1

9 pages, 5379 KB  
Communication
Generation of a Focused THz Vortex Beam from a Spintronic THz Emitter with a Helical Fresnel Zone Plate
by Xiaoqiang Zhang, Yong Xu, Bin Hong, Fan Zhang, Anting Wang and Weisheng Zhao
Nanomaterials 2023, 13(14), 2037; https://doi.org/10.3390/nano13142037 - 10 Jul 2023
Cited by 7 | Viewed by 2203
Abstract
Similar to optical vortex beams, terahertz (THz) vortex beams (TVBs) also carry orbital angular momentum (OAM). However, little research has been reported on the generation of TVBs. In this paper, based on the detour phase technique, we design a series of spintronic terahertz [...] Read more.
Similar to optical vortex beams, terahertz (THz) vortex beams (TVBs) also carry orbital angular momentum (OAM). However, little research has been reported on the generation of TVBs. In this paper, based on the detour phase technique, we design a series of spintronic terahertz emitters with a helical Fresnel zone plate (STE-HFZP) to directly generate focused TVBs with topological charges (TCs) of l = ±1, ±2 and ±3, respectively. The STE-HFZP is a hybrid THz device composed of a terahertz emitter and a THz lens, and it has a high numerical aperture (NA), achieving subwavelength focal spots. Its focus properties are surveyed systemically through accurate simulations. This STE-HFZP can also generate focused TVBs with higher order TCs. More importantly, the components of the focused electric field with OAM make up the majority of the intensity and have potential applications in the field of THz communications, THz imaging and atom trapping. Full article
Show Figures

Figure 1

11 pages, 3157 KB  
Article
The Role of Ferromagnetic Layer Thickness and Substrate Material in Spintronic Emitters
by Arseniy Buryakov, Pavel Avdeev, Dinar Khusyainov, Nikita Bezvikonnyy, Andreas Coclet, Alexey Klimov, Nicolas Tiercelin, Sergey Lavrov and Vladimir Preobrazhensky
Nanomaterials 2023, 13(11), 1710; https://doi.org/10.3390/nano13111710 - 23 May 2023
Cited by 4 | Viewed by 2582
Abstract
In this article, we investigate optically induced terahertz radiation in ferromagnetic FeCo layers of varying thickness on Si and SiO2 substrates. Efforts have been made to account for the influence of the substrate on the parameters of the THz radiation generated by [...] Read more.
In this article, we investigate optically induced terahertz radiation in ferromagnetic FeCo layers of varying thickness on Si and SiO2 substrates. Efforts have been made to account for the influence of the substrate on the parameters of the THz radiation generated by the ferromagnetic FeCo film. The study reveals that the thickness of the ferromagnetic layer and the material of the substrate significantly affect the generation efficiency and spectral characteristics of the THz radiation. Our results also emphasize the importance of accounting for the reflection and transmission coefficients of the THz radiation when analyzing the generation process. The observed radiation features correlate with the magneto-dipole mechanism, triggered by the ultrafast demagnetization of the ferromagnetic material. This research contributes to a better understanding of THz radiation generation mechanisms in ferromagnetic films and may be useful for the further development of THz technology applications in the field of spintronics and other related areas. A key discovery of our study is the identification of a nonmonotonic relationship between the radiation amplitude and pump intensity for thin films on semiconductor substrates. This finding is particularly significant considering that thin films are predominantly used in spintronic emitters due to the characteristic absorption of THz radiation in metals. Full article
Show Figures

Figure 1

10 pages, 2210 KB  
Article
Terahertz Emission Spectroscopy of Ultrafast Coupled Spin and Charge Dynamics in Nanometer Ferromagnetic Heterostructures
by Zhangshun Li, Yexin Jiang, Zuanming Jin, Zhuoyi Li, Xianyang Lu, Zhijiang Ye, Jin-Yi Pang, Yongbing Xu and Yan Peng
Nanomaterials 2022, 12(23), 4267; https://doi.org/10.3390/nano12234267 - 30 Nov 2022
Cited by 6 | Viewed by 3344
Abstract
Due to its high sensitivity and because it does not rely on the magneto-optical response, terahertz (THz) emission spectroscopy has been used as a powerful time-resolved tool for investigating ultrafast demagnetization and spin current dynamics in nanometer-thick ferromagnetic (FM)/heavy metal (HM) heterostructures. Here, [...] Read more.
Due to its high sensitivity and because it does not rely on the magneto-optical response, terahertz (THz) emission spectroscopy has been used as a powerful time-resolved tool for investigating ultrafast demagnetization and spin current dynamics in nanometer-thick ferromagnetic (FM)/heavy metal (HM) heterostructures. Here, by changing the order of the conductive HM coating on the FM nanometer film, the dominant electric dipole contribution to the laser-induced THz radiation can be unraveled from the ultrafast magnetic dipole. Furthermore, to take charge equilibration into account, we separate the femtosecond laser-induced spin-to-charge converted current and the instantaneous discharging current within the illuminated area. The THz emission spectroscopy gives us direct information into the coupled spin and charge dynamics during the first moments of the light–matter interaction. Our results also open up new perspectives to manipulate and optimize the ultrafast charge current for promising high-performance and broadband THz radiation. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Graphical abstract

9 pages, 2400 KB  
Article
Controlled Spintronic Emitter of THz Radiation on an Atomically Thin WS2/Silicon Substrate
by Arseniy Buryakov, Anastasia Gorbatova, Pavel Avdeev, Nikita Bezvikonnyi, Daniil Abdulaev, Alexey Klimov, Sergei Ovcharenko and Elena Mishina
Metals 2022, 12(10), 1676; https://doi.org/10.3390/met12101676 - 6 Oct 2022
Cited by 12 | Viewed by 2444
Abstract
The control and monitoring of the polarization of terahertz radiation are of interest for numerous applications. Here we present a simple controllable THz emitter with a small coercive magnetic field. It is based on a Co/WS2/silicon structure, in which the presence [...] Read more.
The control and monitoring of the polarization of terahertz radiation are of interest for numerous applications. Here we present a simple controllable THz emitter with a small coercive magnetic field. It is based on a Co/WS2/silicon structure, in which the presence of uniaxial magnetic anisotropy caused by mechanical stress in a ferromagnetic film was found. Our results show that a ferromagnet/semiconductor emitter can become a technologically simple device for terahertz spintronics. Full article
(This article belongs to the Section Crystallography and Applications of Metallic Materials)
Show Figures

Figure 1

9 pages, 1945 KB  
Article
Increasing the Efficiency of a Spintronic THz Emitter Based on WSe2/FeCo
by Dinar Khusyainov, Andrey Guskov, Sergei Ovcharenko, Nicolas Tiercelin, Vladimir Preobrazhensky, Arseniy Buryakov, Alexander Sigov and Elena Mishina
Materials 2021, 14(21), 6479; https://doi.org/10.3390/ma14216479 - 28 Oct 2021
Cited by 8 | Viewed by 3158
Abstract
We report an increase in terahertz (THz) radiation efficiency due to FeCo/WSe2 structures in the reflection geometry. This can be attributed to an absorption increase in the alloy FeCo layer at the input FeCo/WSe2 interface due to constructive interference, as well [...] Read more.
We report an increase in terahertz (THz) radiation efficiency due to FeCo/WSe2 structures in the reflection geometry. This can be attributed to an absorption increase in the alloy FeCo layer at the input FeCo/WSe2 interface due to constructive interference, as well as to the backward transport of hot carriers from FeCo to WSe2. In contrast to the transmission geometry, the THz generation efficiency in the reflection is much less dependent on the magnetic layer thickness. Our results suggest a cheap and efficient way to improve the characteristics of THz spintronic emitters with the conservation of a full set of their important properties. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

Back to TopTop