Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = spinnable fluid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6047 KB  
Article
A Modified Triaxial Electrospinning for a High Drug Encapsulation Efficiency of Curcumin in Ethylcellulose
by Xingjian Yang, Qiling Wang, Zhirun Zhu, Yi Lu, Hui Liu, Deng-Guang Yu and Sim-Wan Annie Bligh
Pharmaceutics 2025, 17(9), 1152; https://doi.org/10.3390/pharmaceutics17091152 - 2 Sep 2025
Cited by 1 | Viewed by 771
Abstract
Background: Although electrohydrodynamic atomization (EHDA) consistently provides drug-encapsulation efficiencies (DEE) far above those of conventional bottom-up nanotechnologies, the question of how to systematically push that efficiency even higher remains largely unexplored. Methods: This study introduces a modified triaxial electrospinning protocol tailored to the [...] Read more.
Background: Although electrohydrodynamic atomization (EHDA) consistently provides drug-encapsulation efficiencies (DEE) far above those of conventional bottom-up nanotechnologies, the question of how to systematically push that efficiency even higher remains largely unexplored. Methods: This study introduces a modified triaxial electrospinning protocol tailored to the application and benchmarks it against two conventional techniques: single-fluid blending and coaxial electrospinning. Ethylcellulose (EC) served as the polymeric matrix, while curcumin (Cur) was chosen as the model drug. In the triaxial setup, an electrospinnable, drug-free EC solution was introduced as an intermediate sheath to act as a molecular barrier, preventing Cur diffusion from the core fluid. Ethanol alone was used as the outermost fluid to guarantee a stable and continuous jet. Results: This strategy provided a DEE value of 98.74 ± 6.45%, significantly higher than the 93.74 ± 5.39% achieved by coaxial electrospinning and the 88.63 ± 7.36% obtained with simple blending. Sustained-release testing revealed the same rank order: triaxial fibers released Cur the most slowly and exhibited the smallest initial burst release effect, followed by coaxial and then blended fibers. Mechanistic models for both fiber production and drug release are proposed to clarify how the tri-layer core–shell structure translates into superior performance. Conclusions: The modified triaxial electrospinning was able to open a new practical route to produce core-sheath nanofibers. These nanofibers could provide a higher DEE and a better sustained drug release profile than those from the coaxial and blending processes. Full article
Show Figures

Graphical abstract

35 pages, 6200 KB  
Review
Alginate-Based Electrospun Nanofibers and the Enabled Drug Controlled Release Profiles: A Review
by Zhiyuan Zhang, Hui Liu, Deng-Guang Yu and Sim-Wan Annie Bligh
Biomolecules 2024, 14(7), 789; https://doi.org/10.3390/biom14070789 - 3 Jul 2024
Cited by 66 | Viewed by 6262
Abstract
Alginate is a natural polymer with good biocompatible properties and is a potential polymeric material for the sustainable development and replacement of petroleum derivatives. However, the non-spinnability of pure alginate solutions has hindered the expansion of alginate applications. With the continuous development of [...] Read more.
Alginate is a natural polymer with good biocompatible properties and is a potential polymeric material for the sustainable development and replacement of petroleum derivatives. However, the non-spinnability of pure alginate solutions has hindered the expansion of alginate applications. With the continuous development of electrospinning technology, synthetic polymers, such as PEO and PVA, are used as co-spinning agents to increase the spinnability of alginate. Moreover, the coaxial, parallel Janus, tertiary and other diverse and novel electrospun fiber structures prepared by multi-fluid electrospinning have found a new breakthrough for the problem of poor spinning of natural polymers. Meanwhile, the diverse electrospun fiber structures effectively achieve multiple release modes of drugs. The powerful combination of alginate and electrostatic spinning is widely used in many biomedical fields, such as tissue engineering, regenerative engineering, bioscaffolds, and drug delivery, and the research fever continues to climb. This is particularly true for the controlled delivery aspect of drugs. This review provides a brief overview of alginate, introduces new advances in electrostatic spinning, and highlights the research progress of alginate-based electrospun nanofibers in achieving various controlled release modes, such as pulsed release, sustained release, biphasic release, responsive release, and targeted release. Full article
Show Figures

Figure 1

14 pages, 7915 KB  
Article
Morphology Control of Electrospun Brominated Butyl Rubber Microfibrous Membrane
by Tianxiao Zhu, Ruizhi Tian, Liang Wu, Dingyi Zhang, Leying Chen, Xianmei Zhang, Xiangyang Hao and Ping Hu
Polymers 2023, 15(19), 3909; https://doi.org/10.3390/polym15193909 - 27 Sep 2023
Cited by 1 | Viewed by 1947
Abstract
Brominated butyl rubber (BIIR) is a derivative of butyl rubber, with the advantage of high physical strength, good vibration damping performance, low permeability, aging resistance, weather resistance, etc. However, it is hard to avoid BIIR fiber sticking together due to serious swelling or [...] Read more.
Brominated butyl rubber (BIIR) is a derivative of butyl rubber, with the advantage of high physical strength, good vibration damping performance, low permeability, aging resistance, weather resistance, etc. However, it is hard to avoid BIIR fiber sticking together due to serious swelling or merging, resulting in few studies on BIIR electrospinning. In this work, brominated butyl rubber membrane (mat) with BIIR microfiber has been prepared by electrospinning. The spinnability of elastomer BIIR has been explored. The factors influencing the morphology of BIIR microfiber membranes have been studied, including solvent, electrospinning parameters, concentration, and the rheological property of electrospinning solution. The optimal parameters for electrospinning BIIR have been obtained. A BIIR membrane with the ideal microfiber morphology has been obtained, which can be peeled from aluminum foil on a collector easily without being broken. Anti-bacterial property, the electrical conductivity of these membranes, and the mechanical properties of these samples were studied. The optimized BIIR electrospinning solution is Bingham fluid. The results of these experiments show that a BIIR membrane can be used in the field of medical prevention, wearable electronics, electronic skin, and in other fields that require antibacterial functional polymer materials. Full article
(This article belongs to the Collection Electrospun Nanofibers)
Show Figures

Figure 1

14 pages, 4948 KB  
Article
Preparation, Properties and Application in Electrospinning of Tremella Polysaccharide–Protein Complex
by Xiaofang Zhao, Zhiyu Wang, Yingxu Liu, Zhaolian Han, Tingting Liu and Zhiqiang Cheng
Foods 2023, 12(8), 1609; https://doi.org/10.3390/foods12081609 - 10 Apr 2023
Cited by 14 | Viewed by 3016
Abstract
In this paper, the effects of different proteins (soybean protein isolate, wheat protein hydrolysate, tremella protein) on the activity of tremella polysaccharide under different conditions were studied. The optimal protein–polysaccharide complex was determined by grafting degree and activity screening, and the microstructure and [...] Read more.
In this paper, the effects of different proteins (soybean protein isolate, wheat protein hydrolysate, tremella protein) on the activity of tremella polysaccharide under different conditions were studied. The optimal protein–polysaccharide complex was determined by grafting degree and activity screening, and the microstructure and rheological properties were studied. The results showed that when the ratio of soybean protein isolate to tremella polysaccharide was 2:1 and the solution pH was 7, the optimal complex was obtained by heating at 90 °C for 4 h, and its grafting degree and antioxidant activity were the best. Studies have shown that tremella polysaccharide and soybean protein isolate complex (TFP-SPI) solution is pseudoplastic fluids. At the same time, tremella polysaccharide (TFP) and TFP-SPI were used for electrospinning to observe its spinnability. When the ratio of PVA/TFP-SPI/PL was 8:1:1, nanofibers with uniform diameter and good morphology were obtained. This paper provides a theoretical basis for the comprehensive utilization of tremella polysaccharide and its electrospun fiber can be used as active film for food packaging. Full article
Show Figures

Graphical abstract

22 pages, 20986 KB  
Article
Spinning of Endless Bioactive Silicate Glass Fibres for Fibre Reinforcement Applications
by Julia Eichhorn, Cindy Elschner, Martin Groß, Rudi Reichenbächer, Aarón X. Herrera Martín, Ana Prates Soares, Heilwig Fischer, Julia Kulkova, Niko Moritz, Leena Hupa, Markus Stommel, Christina Scheffler and Martin Kilo
Appl. Sci. 2021, 11(17), 7927; https://doi.org/10.3390/app11177927 - 27 Aug 2021
Cited by 4 | Viewed by 4056
Abstract
Bioactive glasses have been used for many years in the human body as bone substitute. Since bioactive glasses are not readily available in the form of endless thin fibres with diameters below 20 µm, their use is limited to mainly non-load-bearing applications in [...] Read more.
Bioactive glasses have been used for many years in the human body as bone substitute. Since bioactive glasses are not readily available in the form of endless thin fibres with diameters below 20 µm, their use is limited to mainly non-load-bearing applications in the form of particles or granules. In this study, the spinnability of four bioactive silicate glasses was evaluated in terms of crystallisation behaviour, characteristic processing temperatures and viscosity determined by thermal analysis. The glass melts were drawn into fibres and their mechanical strength was measured by single fibre tensile tests before and after the surface treatment with different silanes. The degradation of the bioactive glasses was observed in simulated body fluid and pure water by recording the changes of the pH value and the ion concentration by inductively coupled plasma optical emission spectrometry; further, the glass degradation process was monitored by scanning electron microscopy. Additionally, first in vitro experiments using murine pre-osteoblast cell line MC3T3E1 were carried out in order to evaluate the interaction with the glass fibre surface. The results achieved in this work show up the potential of the manufacturing of endless bioactive glass fibres with appropriate mechanical strength to be applied as reinforcing fibres in new innovative medical implants. Full article
(This article belongs to the Special Issue Surface Modification of Glass Fibers)
Show Figures

Figure 1

18 pages, 11015 KB  
Article
Computational Fluid Dynamics Study of Magnus Force on an Axis-Symmetric, Disk-Type AUV with Symmetric Propulsion
by Chen-Wei Chen and Yong Jiang
Symmetry 2019, 11(3), 397; https://doi.org/10.3390/sym11030397 - 19 Mar 2019
Cited by 12 | Viewed by 4774
Abstract
In this paper, the Magnus force induced by a disk-type, spinnable autonomous underwater vehicle (AUV), i.e., autonomous underwater helicopter (AUH), was predicted to promote the spinning AUH moving away from a deep-sea region with temporary and shockable ocean current. The simulation technique of [...] Read more.
In this paper, the Magnus force induced by a disk-type, spinnable autonomous underwater vehicle (AUV), i.e., autonomous underwater helicopter (AUH), was predicted to promote the spinning AUH moving away from a deep-sea region with temporary and shockable ocean current. The simulation technique of the ANSYS-CFX solver based on viscous computational fluid dynamics (CFD) was employed to analyze the hydrodynamic performance of the spinning AUH and its high-speed propellers in uniform flow conditions. The behavior of the spinning AUH in currents can obviously alter the pressure distribution on both sides of the disk-shaped hull form, resulting in a differential pressure force in the horizontal plane, i.e., Magnus force. The simulation results show that this induced force can enable an AUH at 1 knot service speed to successfully move away from a sudden, transient, and/or steady, uniform ocean current region with inflow velocities of 1–2 knots in deep-sea conditions. The Magnus force induced by symmetrically configurated propeller couple force can be more efficient and effective at driving the AUH’s escape from the current spoiler zone than driving the AUH using the two high-revolution propellers directly. A suitable mechanical power energy-saving matching point integrating the AUH and symmetric propulsion was determined to compare the proposed method and two conventional methods for AUH escape from currents. The comparison results prove that the proposed method is effective and efficient. This study provides a significant reference for the interdependent relationship between the effective spinning speed of an AUH, subject to couple force, controlled propeller revolution, AUH speed, and battery capacity, and the range of ocean currents. Full article
Show Figures

Figure 1

Back to TopTop