Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = spectrophotometric transducer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 5289 KiB  
Article
Amperometric Biosensor Based on Glutamate Oxidase to Determine Ast Activity
by Daryna Mruga, Kseniia Berketa, Andrii Sverstiuk, Vasyl Martsenyuk, Aleksandra Klos-Witkowska, Yurii Palianytsia, Sergei Dzyadevych and Oleksandr Soldatkin
Sensors 2024, 24(24), 7891; https://doi.org/10.3390/s24247891 - 10 Dec 2024
Viewed by 1111
Abstract
This work presents the development of an amperometric biosensor for detecting aspartate aminotransferase (AST) activity in biological fluids using a platinum disk electrode as the working transducer. Optimal concentrations of substrates (aspartate, α-ketoglutarate) and the coenzyme (pyridoxal phosphate) were determined to ensure efficient [...] Read more.
This work presents the development of an amperometric biosensor for detecting aspartate aminotransferase (AST) activity in biological fluids using a platinum disk electrode as the working transducer. Optimal concentrations of substrates (aspartate, α-ketoglutarate) and the coenzyme (pyridoxal phosphate) were determined to ensure efficient biosensor operation. A semi-permeable poly-m-phenylenediamine membrane was applied to enhance selectivity against electroactive interferents. The biosensor demonstrated good stability (storage, continuous operation, and production reproducibility) and analytical performance (sensitivity 8.56 nA/min for 50 U/L AST, LOD 1 U/L, linear range 1–110 U/L). Testing with real samples showed a high correlation (R = 0.989) with spectrophotometric analysis, supporting its potential for further applications. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

15 pages, 3158 KiB  
Article
Development and Evaluation of a Low-Cost Triglyceride Quantification Enzymatic Biosensor Using an Arduino-Based Microfluidic System
by Jorge E. Pliego-Sandoval, Arturo Díaz-Barbosa, Luis A. Reyes-Nava, María Angeles Camacho-Ruiz, Laura Elena Iñiguez-Muñoz and Osmar Pinto-Pérez
Biosensors 2023, 13(8), 826; https://doi.org/10.3390/bios13080826 - 17 Aug 2023
Cited by 5 | Viewed by 3072
Abstract
Overweight and obesity promote diabetes and heart disease onset. Triglycerides are key biomarkers for cardiovascular disease, strokes, and other health issues. Scientists have devised methods and instruments for the detection of these molecules in liquid samples. In this study, an enzymatic biosensor was [...] Read more.
Overweight and obesity promote diabetes and heart disease onset. Triglycerides are key biomarkers for cardiovascular disease, strokes, and other health issues. Scientists have devised methods and instruments for the detection of these molecules in liquid samples. In this study, an enzymatic biosensor was developed using an Arduino-based microfluidic platform, wherein a lipolytic enzyme was immobilized on an ethylene-vinyl acetate polymer through physical adsorption. This low-cost optical biosensor employed a spectrophotometric transducer and was assessed in liquid samples to indirectly detect triglycerides and fatty acids using p-nitrophenol as an indicator. The average triglyceride level detected in the conducted experiments was 47.727 mg/dL. The biosensor exhibited a percentage of recovery of 81.12% and a variation coefficient of 0.791%. Furthermore, the biosensor demonstrated the ability to detect triglyceride levels without the need for sample dilution, ranging from 7.6741 mg/dL to 58.835 mg/dL. This study successfully developed an efficient and affordable enzymatic biosensor prototype for triglyceride and fatty acid detection. The lipolytic enzyme immobilization on the polymer substrate provided a stable and reproducible detection system, rendering this biosensor an exciting option for the detection of these molecules. Full article
(This article belongs to the Special Issue Advances in Biosensors for Health-Care and Diagnostics)
Show Figures

Figure 1

16 pages, 2103 KiB  
Article
Highly Stable Potentiometric (Bio)Sensor for Urea and Urease Activity Determination
by Marcin Urbanowicz, Kamila Sadowska, Agnieszka Paziewska-Nowak, Anna Sołdatowska and Dorota G. Pijanowska
Membranes 2021, 11(11), 898; https://doi.org/10.3390/membranes11110898 - 20 Nov 2021
Cited by 9 | Viewed by 4554
Abstract
There is growing interest for bioanalytical tools that might be designed for a specific user, primarily for research purposes. In this perspective, a new, highly stable potentiometric sensor based on glassy carbon/polyazulene/NH4+-selective membrane was developed and utilized for urease activity [...] Read more.
There is growing interest for bioanalytical tools that might be designed for a specific user, primarily for research purposes. In this perspective, a new, highly stable potentiometric sensor based on glassy carbon/polyazulene/NH4+-selective membrane was developed and utilized for urease activity determination. Urease–urea interaction studies were carried out and the Michaelis–Menten constant was established for this enzymatic reaction. Biofunctionalization of the ammonium ion-selective sensor with urease lead to urea biosensor with remarkably good potential stability (drift coefficient ~0.9 mV/h) and short response time (t95% = 36 s). The prepared biosensor showed the Nernstian response (S = 52.4 ± 0.7 mV/dec) in the urea concentration range from 0.01 to 20 mM, stable for the experimental time of 60 days. In addition, some insights into electrical properties of the ion-to-electron transducing layer resulting from impedance spectroscopy measurements are presented. Based on the RCQ equivalent circuits comparison, it can be drawn that the polyazulene (PAz) layer shows the least capacitive behavior, which might result in good time stability of the sensor in respect to response as well as potential E0. Both the polyazulene-based solid-contact ion selective electrodes and urea biosensors were successfully used in trial studies for determination of ammonium ion and urea in human saliva samples. The accuracy of ammonium ion and urea levels determination by potentiometric method was confirmed by two reference spectrophotometric methods. Full article
(This article belongs to the Special Issue Ion-Selective Separation Membrane)
Show Figures

Graphical abstract

17 pages, 2809 KiB  
Article
Detection of Sub-Nanomolar Concentration of Trypsin by Thickness-Shear Mode Acoustic Biosensor and Spectrophotometry
by Ivan Piovarci, Sopio Melikishvili, Marek Tatarko, Tibor Hianik and Michael Thompson
Biosensors 2021, 11(4), 117; https://doi.org/10.3390/bios11040117 - 11 Apr 2021
Cited by 15 | Viewed by 4212
Abstract
The determination of protease activity is very important for disease diagnosis, drug development, and quality and safety assurance for dairy products. Therefore, the development of low-cost and sensitive methods for assessing protease activity is crucial. We report two approaches for monitoring protease activity: [...] Read more.
The determination of protease activity is very important for disease diagnosis, drug development, and quality and safety assurance for dairy products. Therefore, the development of low-cost and sensitive methods for assessing protease activity is crucial. We report two approaches for monitoring protease activity: in a volume and at surface, via colorimetric and acoustic wave-based biosensors operated in the thickness-shear mode (TSM), respectively. The TSM sensor was based on a β-casein substrate immobilized on a piezoelectric quartz crystal transducer. After an enzymatic reaction with trypsin, it cleaved the surface-bound β-casein, which increased the resonant frequency of the crystal. The limit of detection (LOD) was 0.48 ± 0.08 nM. A label-free colorimetric assay for trypsin detection has also been performed using β-casein and 6-mercaptohexanol (MCH) functionalized gold nanoparticles (AuNPs/MCH-β-casein). Due to the trypsin cleavage of β-casein, the gold nanoparticles lost shelter, and MCH increased the attractive force between the modified AuNPs. Consequently, AuNPs aggregated, and the red shift of the absorption spectra was observed. Spectrophotometric assay enabled an LOD of 0.42 ± 0.03 nM. The Michaelis–Menten constant, KM, for reverse enzyme reaction has also been estimated by both methods. This value for the colorimetric assay (0.56 ± 0.10 nM) is lower in comparison with those for the TSM sensor (0.92 ± 0.44 nM). This is likely due to the better access of the trypsin to the β-casein substrate at the surface of AuNPs in comparison with those at the TSM transducer. Full article
Show Figures

Figure 1

15 pages, 3722 KiB  
Article
Plasmonic Detection of Glucose in Serum Based on Biocatalytic Shape-Altering of Gold Nanostars
by Masauso Moses Phiri, Danielle Wingrove Mulder and Barend Christiaan Vorster
Biosensors 2019, 9(3), 83; https://doi.org/10.3390/bios9030083 - 29 Jun 2019
Cited by 9 | Viewed by 7117
Abstract
Nanoparticles have been used as signal transducers for optical readouts in biosensors. Optical approaches are cost-effective with easy readout formats for clinical diagnosis. We present a glucose biosensor based on the biocatalytic shape-altering of gold nanostars via silver deposition. Improved sensitivity was observed [...] Read more.
Nanoparticles have been used as signal transducers for optical readouts in biosensors. Optical approaches are cost-effective with easy readout formats for clinical diagnosis. We present a glucose biosensor based on the biocatalytic shape-altering of gold nanostars via silver deposition. Improved sensitivity was observed due to the nanostars clustering after being functionalised with glucose oxidase (GOx). The biosensor quantified glucose in the serum samples with a 1:1000 dilution factor, and colorimetrically distinguished between the concentrations. The assay demonstrated good specificity and sensitivity. The fabricated glucose biosensor is a rapid kinetic assay using a basic entry level laboratory spectrophotometric microplate reader. Such a biosensor could be very useful in resource-constrained regions without state-of-the-art laboratory equipment. Furthermore, naked eye detection of glucose makes this a suitable biosensor for technology transfer to other point-of-care devices. Full article
Show Figures

Figure 1

Back to TopTop