Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = specific sucrose uptake rate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3507 KiB  
Article
One-Time Application of Polymer-Coated Urea Increased Rice Yield and Plant Nitrogen Uptake by Optimizing Root Morphological and Physiological Traits
by Junlin Zhu, Song Chen, Chunmei Xu, Yuanhui Liu, Kai Yu, Xiufu Zhang, Danying Wang and Guang Chu
Agronomy 2025, 15(2), 282; https://doi.org/10.3390/agronomy15020282 - 23 Jan 2025
Viewed by 939
Abstract
Previous studies have shown that a one-time application of polymer-coated urea (PCU) can increase rice yield and nitrogen (N) uptake. However, the connection between rice root morphology and physiological traits and grain yield and N absorption has still not been well understood. The [...] Read more.
Previous studies have shown that a one-time application of polymer-coated urea (PCU) can increase rice yield and nitrogen (N) uptake. However, the connection between rice root morphology and physiological traits and grain yield and N absorption has still not been well understood. The objective of this study was to explore whether one-time application of PCU could enhance shoot growth, improve plant physiological activity, and ultimately boost rice yield and NUE by optimizing root morphological and physiological traits. In this study, a super-large-panicle indica-japonica hybrid rice variety, Yongyou1540, was cultivated under three N treatments during 2022 and 2023: (1) 0N, throughout the entire growth period, no N fertilizer was applied; (2) LFP, local farmers’ N management practices were followed, using urea as the N source, and N fertilizer management was carried out according to the local farmers’ customary fertilization practices; and (3) PCU, a one-time application of PCU was performed at one day before transplanting. PCU is a controlled-release fertilizer in which urea granules are coated with a synthetic polymer layer; it has been widely used in rice cultivation. In both LFP and PCU treatments, N was applied at a rate of 200 kg N ha−1. PCU is a type of controlled-release fertilizer in which urea granules are coated with a layer of synthetic polymer. Compared to LFP, PCU significantly improved several root morphological traits, including increased deep-root proportion and specific root length (SRL), throughout the entire growth period; increased root length and root length density at heading and maturity; and increased root biomass growth rate from jointing to heading and reduced reduction rate after heading. Additionally, PCU enhanced root oxidative activity (ROA) and increased zeatin and zeatin riboside (Z+ZR) content in both roots and root bleeding sap at the middle and late grain-filling stages. Furthermore, PCU markedly increased the flag-leaf net photosynthetic rate, Z+ZR content in leaves, and activities of key enzymes involved in sucrose-to-starch conversion in grains during the middle and late grain-filling stages. Correlation analysis indicated that root and shoot biomass growth rate showed a significant positive correlation before heading, and that root biomass reduction rate was significantly negatively correlated with shoot biomass growth rate after heading. ROA and Z+ZR content in both roots and root bleeding sap were significantly associated with flag-leaf photosynthetic rate, Z+ZR content in leaves, and the activities of key enzymes involved in the sucrose-to-starch conversion in grains. On average, PCU increased rice yield by 10.0% and agronomic NUE by 46.2%, compared to LFP. These findings suggest that PCU could optimize root morphological and physiological traits, and thereby promote shoot growth, enhance physiological activity, and ultimately increase both rice yield and NUE. Further research could also investigate the potential for combining PCU with other agronomic practices to enhance both rice yield and NUE. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

16 pages, 3811 KiB  
Article
Comparison of Growth and Metabolomic Profiles of Two Afforestation Cypress Species Cupressus chengiana and Platycladus orientalis Grown at Minjiang Valley in Southwest China
by Zhengqiao Liao, Lijun Zhu, Lei Liu, Jürgen Kreuzwieser, Christiane Werner and Baoguo Du
Metabolites 2024, 14(8), 453; https://doi.org/10.3390/metabo14080453 - 17 Aug 2024
Cited by 1 | Viewed by 1082
Abstract
In recent years, afforestation has been conducted in China’s hot and dry valleys. However, there is still a paucity of knowledge regarding the performance of tree species in these semi-arid regions, particularly with regard to interspecies differences. The present study compares the growth [...] Read more.
In recent years, afforestation has been conducted in China’s hot and dry valleys. However, there is still a paucity of knowledge regarding the performance of tree species in these semi-arid regions, particularly with regard to interspecies differences. The present study compares the growth and metabolome characteristics of two widely used cypress species, namely Cupressus chengiana and Platycladus orientalis, grown at two sites with distinct climate conditions in the hot and dry Minjiang Valley in southwestern China. The findings indicate that C. chengiana trees exhibit superior growth rates compared to P. orientalis trees at both study sites. In comparison to P. orientalis trees, C. chengiana trees demonstrated a greater tendency to close their stomata in order to prevent water loss at the hotter and drier site, Llianghekou (LHK). Additionally, C. chengiana trees exhibited significantly lower hydrogen peroxide levels than P. orientalis trees, either due to lower production and/or higher scavenging of reactive oxygen species. C. chengiana trees accumulated soluble sugars as well as sugar derivatives, particularly those involved in sucrose and galactose metabolisms under stressful conditions. The species-specific differences were also reflected in metabolites involved in the tricarboxylic acid cycle, nitrogen, and secondary metabolisms. The metabolome profiles of the two species appeared to be influenced by the prevailing climatic conditions. It appeared that the trees at the drier and hotter site, LHK, were capable of efficient nitrogen uptake from the soil despite the low soil nitrogen concentration. This study is the first to compare the growth performance and metabolic profiles of two widely used tree species with high resistance to adverse conditions. In addition to the species-specific differences and adaptations to different sites, the present study also provides insights into potential management strategies to alleviate abiotic stress, particularly with regard to nitrogen nutrients, in the context of climate change. Full article
(This article belongs to the Special Issue Metabolic Responses of Plants to Abiotic Stress)
Show Figures

Figure 1

14 pages, 1124 KiB  
Article
Continuous Bioproduction of Alginate Bacterial under Nitrogen Fixation and Nonfixation Conditions
by Pablo Contreras-Abara, Tania Castillo, Belén Ponce, Viviana Urtuvia, Carlos Peña and Alvaro Díaz-Barrera
Fermentation 2023, 9(5), 426; https://doi.org/10.3390/fermentation9050426 - 28 Apr 2023
Cited by 2 | Viewed by 2609
Abstract
Alginate is a biomaterial produced by Azotobacter vinelandii, a diazotroph that, under nitrogen-fixing conditions, can fix nitrogen under high oxygen levels. In A. vinelandii, alginate is synthesized from fructose-6P via synthesis of precursor, polymerization, and modification/exportation. Due to its viscosifying, gelling, and [...] Read more.
Alginate is a biomaterial produced by Azotobacter vinelandii, a diazotroph that, under nitrogen-fixing conditions, can fix nitrogen under high oxygen levels. In A. vinelandii, alginate is synthesized from fructose-6P via synthesis of precursor, polymerization, and modification/exportation. Due to its viscosifying, gelling, and thickening characteristics, alginate is widely used in food, pharmaceutical, and cosmetical industries. This study aimed to develop a continuous bioprocess and a comparative analysis of alginate production under diazotrophic and nondiazotrophic conditions. Continuous cultures were developed at three dilution rates (0.06, 0.08 and 0.10 h−1). In steady state, the respiratory activity, alginate production, alginate molecular weight and the genes encoding alginate polymerase were determined. Under the conditions studied, the specific oxygen uptake rate and respiratory quotient were similar. The diazotrophic conditions improved the conversion of sucrose to alginate and the specific productivity rate, which was 0.24 ± 0.03 g g−1 h−1. A higher alginate molecular weight (725 ± 20 kDa) was also achieved under diazotrophic conditions, which can be explained by an increase in the gene expression of genes alg8 and alg44 (encoding polymerase). The results of this work show the feasibility of enhancing alginate production (yields and specific productivity rates) and quality (molecular weight) under nitrogen-fixing conditions, opening the possibility of developing a continuous bioprocess to produce alginate with specific characteristics under conditions of diazotrophy. Full article
Show Figures

Figure 1

14 pages, 2608 KiB  
Article
Molecular Insights into Salinity Responsiveness in Contrasting Genotypes of Rice at the Seedling Stage
by Jingjing Zhang, Tingting Xu, Yiran Liu, Tong Chen, Qiuxin Zhang, Weiyan Li, Hongkai Zhou, Yuexiong Zhang and Zemin Zhang
Int. J. Mol. Sci. 2022, 23(3), 1624; https://doi.org/10.3390/ijms23031624 - 30 Jan 2022
Cited by 13 | Viewed by 3996
Abstract
Salinity is one of the most common unfavorable environmental conditions that limits plant growth and development, ultimately reducing crop productivity. To investigate the underlying molecular mechanism involved in the salinity response in rice, we initially screened 238 rice cultivars after salt treatment at [...] Read more.
Salinity is one of the most common unfavorable environmental conditions that limits plant growth and development, ultimately reducing crop productivity. To investigate the underlying molecular mechanism involved in the salinity response in rice, we initially screened 238 rice cultivars after salt treatment at the seedling stage and identified two highly salt-tolerant cultivars determined by the relative damage rate parameter. The majority of cultivars (94.1%) were ranked as salt-sensitive and highly salt-sensitive. Transcriptome profiling was completed in highly salt-tolerant, moderately salt-tolerant, and salt-sensitive under water and salinity treatments at the seedling stage. Principal component analysis displayed a clear distinction among the three cultivars under control and salinity stress conditions. Several starch and sucrose metabolism-related genes were induced after salt treatment in all genotypes at the seedling stage. The results from the present study enable the identification of the ascorbate glutathione pathway, potentially participating in the process of plant response to salinity in the early growth stage. Our findings also highlight the significance of high-affinity K+ uptake transporters (HAKs) and high-affinity K+ transporters (HKTs) during salt stress responses in rice seedlings. Collectively, the cultivar-specific stress-responsive genes and pathways identified in the present study act as a useful resource for researchers interested in plant responses to salinity at the seedling stage. Full article
(This article belongs to the Special Issue Molecular Research in Rice: Genetics and Breeding)
Show Figures

Figure 1

35 pages, 23843 KiB  
Article
Extended Utilization of Constraint-Based Metabolic Model in a Long-Growing Crop
by Porntip Chiewchankaset, Saowalak Kalapanulak and Treenut Saithong
Processes 2019, 7(5), 259; https://doi.org/10.3390/pr7050259 - 4 May 2019
Viewed by 3221
Abstract
The constraint-based rMeCBM-KU50 model of cassava storage root growth was analyzed to evaluate its sensitivity, with respect to reaction flux distribution and storage root growth rate, to changes in model inputted data and constraints, including sucrose uptake rate-related data—photosynthetic rate, total leaf area, [...] Read more.
The constraint-based rMeCBM-KU50 model of cassava storage root growth was analyzed to evaluate its sensitivity, with respect to reaction flux distribution and storage root growth rate, to changes in model inputted data and constraints, including sucrose uptake rate-related data—photosynthetic rate, total leaf area, total photosynthetic rate, storage root dry weight, and biomass function-related data. These mainly varied within ±90% of the model default values, although exceptions were made for the carbohydrate (−90% to 8%) and starch (−90% to 9%) contents. The results indicated that the predicted storage root growth rate was highly affected by specific sucrose uptake rates through the total photosynthetic rate and storage root dry weight variations; whereas the carbon flux distribution, direction and partitioning inclusive, was more sensitive to the variation in biomass content, particularly the carbohydrate content. This study showed that the specific sucrose uptake rate based on the total photosynthetic rate, storage root dry weight, and carbohydrate content were critical to the constraint-based metabolic modeling and deepened our understanding of the input–output relationship—specifically regarding the rMeCBM-KU50 model—providing a valuable platform for the modeling of plant metabolic systems, especially long-growing crops. Full article
(This article belongs to the Special Issue In silico metabolic modeling and engineering)
Show Figures

Figure 1

Back to TopTop