Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = specific oxygen uptake rate (SOUR)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2851 KiB  
Article
Measurement of Oxygen Transfer Rate and Specific Oxygen Uptake Rate of h-iPSC Aggregates in Vertical Wheel Bioreactors to Predict Maximum Cell Density Before Oxygen Limitation
by James Kim, Omokhowa Agbojo, Sunghoon Jung and Matt Croughan
Bioengineering 2025, 12(4), 332; https://doi.org/10.3390/bioengineering12040332 - 22 Mar 2025
Viewed by 1697
Abstract
The prediction of the cell yield in large-scale bioreactor culture is an important factor for various cell therapy bioprocess operations to ensure consistency in cell quality and efficient use of resources. However, the shear sensitivity of cells used in cell therapy manufacturing can [...] Read more.
The prediction of the cell yield in large-scale bioreactor culture is an important factor for various cell therapy bioprocess operations to ensure consistency in cell quality and efficient use of resources. However, the shear sensitivity of cells used in cell therapy manufacturing can make such predictions difficult, particularly in large-scale suspension cultures that have significant stresses without representative scale down models. The PBS Vertical-Wheel (VW) bioreactors have been demonstrated to provide a homogeneous hydrodynamic environment with low shear for cell culture at various scales (0.1–80 L) and is thereby employed for various shear-sensitive cells. In this study, the oxygen transfer rate for surface aeration for three large-scale VW bioreactors was measured along with the specific oxygen uptake rate (sOUR) of iPSCs cultured in the bioreactors. The oxygen mass transfer coefficient was measured in PBS-3/15/80 L bioreactors at different agitation rates, headspace gas flowrates, and working volumes using the static gassing-out method. The sOUR of iPSCs was measured using the dynamic method in the PBS-0.1 L Mini with a custom DO probe configuration. The results from both experiments were combined to calculate the theoretical maximum cell density before oxygen limitation across VW bioreactors at 2 L/3 L/10 L/15 L/50 L/80 L working volumes at a different agitation speed and aeration rate. Full article
(This article belongs to the Special Issue Cell Bioprocess Engineering: Basic Fundamentals and Applications)
Show Figures

Graphical abstract

19 pages, 3003 KiB  
Article
Light Enables Partial Nitrification and Algal-Bacterial Consortium in Rotating Biological Contactors: Performance and Microbial Community
by Zichun Yan and Zhibin Pei
Sustainability 2024, 16(13), 5538; https://doi.org/10.3390/su16135538 - 28 Jun 2024
Cited by 4 | Viewed by 1483
Abstract
Partial nitrification–anaerobic ammonia oxidation represents an innovative nitrogen removal technique, distinguished by its shortened nitrogen removal pathway and reduced energy demands. Currently, partial nitrification is mostly studied in sequential batch reactors, and some of the methods to realize partial nitrification in continuous flow [...] Read more.
Partial nitrification–anaerobic ammonia oxidation represents an innovative nitrogen removal technique, distinguished by its shortened nitrogen removal pathway and reduced energy demands. Currently, partial nitrification is mostly studied in sequential batch reactors, and some of the methods to realize partial nitrification in continuous flow reactors have problems such as complicated operation and management, and can be easily destabilized. This study introduces a novel system utilizing light to establish an algal-bacterial consortium within a partial nitrification framework, where oxygen is supplied by algae and a novel rotating biological contactor (RBC). This approach aims to simplify the control strategy and decrease the energy required for aeration. The results demonstrated that light at an intensity of 200 μmol/(m2·s) effectively inhibited nitrite-oxidizing bacteria (NOB), swiftly stabilizing partial nitrification. In the absence of light, free ammonia (FA) and free nitric acid (FNA) inhibited NOB, with ammonium removal efficiency (ARE) and nitrite accumulation ratio (NAR) at 68.35% and 34.00%, respectively. By day 88, under light exposure, effluent NO2-N concentrations surged, with ARE and NAR at 64.21% and 69.45%, respectively. By day 98, NAR peaked at 80.28%. The specific oxygen uptake rate (SOUR) of ammonia-oxidizing bacteria (AOB) and NOB outside the disc was 3.24 mg O2/(g MLSS·h) and 0.75 mg O2/(g MLSS·h), respectively. Extracellular polymeric substance (EPS) content initially decreased, then increased, ultimately exceeding pre-light exposure levels. Microbial abundance significantly declined due to light exposure, with Nitrosomonas related-AOB decreasing by 91.88% from 1.6% to 0.13%, and Nitrospira related-NOB decreasing by 99.23% from 5.19% to 0.04%, respectively. The results indicated that both AOB and NOB were inhibited by light, especially NOB. It is a feasible strategy to achieve partial nitrification and algal-bacterial consortia by using light in a rotating biological contactor. Full article
Show Figures

Figure 1

17 pages, 3227 KiB  
Article
Treatment of Water Contaminated with Non-Steroidal Anti-Inflammatory Drugs Using Peroxymonosulfate Activated by Calcined Melamine@magnetite Nanoparticles Encapsulated into a Polymeric Matrix
by Reza Darvishi Cheshmeh Soltani, Fatemeh Asgari, Negin Hassani, Yeojoon Yoon and Alireza Khataee
Molecules 2022, 27(22), 7845; https://doi.org/10.3390/molecules27227845 - 14 Nov 2022
Cited by 2 | Viewed by 1871
Abstract
In the present study, calcined melamine (CM) and magnetite nanoparticles (MNPs) were encapsulated in a calcium alginate (CA) matrix to effectively activate peroxymonosulfate (PMS) and generate free radical species for the degradation of ibuprofen (IBP) drug. According to the Langmuir isotherm model, the [...] Read more.
In the present study, calcined melamine (CM) and magnetite nanoparticles (MNPs) were encapsulated in a calcium alginate (CA) matrix to effectively activate peroxymonosulfate (PMS) and generate free radical species for the degradation of ibuprofen (IBP) drug. According to the Langmuir isotherm model, the adsorption capacities of the as-prepared microcapsules and their components were insignificant. The CM/MNPs/CA/PMS process caused the maximum degradation of IBP (62.4%) in 30 min, with a synergy factor of 5.24. Increasing the PMS concentration from 1 to 2 mM improved the degradation efficiency from 62.4 to 68.0%, respectively, while an increase to 3 mM caused a negligible effect on the reactor effectiveness. The process performance was enhanced by ultrasound (77.6% in 30 min), UV irradiation (91.6% in 30 min), and electrochemical process (100% in 20 min). The roles of OH and SO4 in the decomposition of IBP by the CM/MNPs/CA/PMS process were 28.0 and 25.4%, respectively. No more than 8% reduction in the degradation efficiency of IBP was observed after four experimental runs, accompanied by negligible leachate of microcapsule components. The bio-assessment results showed a notable reduction in the bio-toxicity during the treatment process based on the specific oxygen uptake rate (SOUR). Full article
Show Figures

Figure 1

14 pages, 3906 KiB  
Article
Fast Granulation by Combining External Sludge Conditioning with FeCl3 Addition and Reintroducing into an SBR
by Jun Liu, Shunchang Yin, Dong Xu, Sarah Piché-Choquette, Bin Ji, Xin Zhou and Jun Li
Polymers 2022, 14(17), 3688; https://doi.org/10.3390/polym14173688 - 5 Sep 2022
Cited by 3 | Viewed by 2238
Abstract
The separation of light and heavy sludge, as well as the aggregation rate of floccular sludge, are two critical aspects of the rapid granulation process in sequencing batch reactors (SBRs) in the early stages. In this study, we investigated the impact of a [...] Read more.
The separation of light and heavy sludge, as well as the aggregation rate of floccular sludge, are two critical aspects of the rapid granulation process in sequencing batch reactors (SBRs) in the early stages. In this study, we investigated the impact of a method to improve both sludge separation and granulation by coupling effluent sludge external conditioning with FeCl3 addition and then reintroducing it into the SBR. By supplementation with 0.1 g Fe3+ (g dried sludge (DS))−1, the concentration of extracellular polymeric substances (EPS) and sludge retention efficiency greatly increased, whereas the moisture content and specific oxygen uptake rate (SOUR) sharply decreased within 24 h external conditioning. Aggregates (1.75 ± 0.05 g·L−1) were reintroduced into the bioreactor once daily from day 13 to day 15. Afterwards, on day 17, aerobic granules with a concentration of mixed liquor suspended solids (MLSS) of 5.636 g/L, a sludge volume index (SVI30) of 45.5 mL/g and an average size of 2.5 mm in diameter were obtained. These results suggest that the external conditioning step with both air-drying and the addition of Fe3+ enhanced the production of EPS in the effluent sludge and improved rapid aggregation and high sludge retention efficiency. Consequently, the reintroduced aggregates with good traits shortened the time required to obtain mature aerobic granular sludge (AGS) and properly separate light and heavy sludge. Indeed, this method jump-started the aggregation, and rapid granulation processes were successful in this work. Additionally, while the removal efficiency of chemical oxygen demand (COD) and nitrogen from ammonium (NH4+-N) decreased when reintroducing the treated sludge into the SBR, such properties increased again as the AGS matured in the SBR, up to removal efficiencies of 96% and 95%, respectively. Full article
(This article belongs to the Special Issue Polymeric Materials for Water/Wastewater Treatment Applications)
Show Figures

Figure 1

21 pages, 2704 KiB  
Review
The Influence of Municipal Wastewater Treatment Technologies on the Biological Stabilization of Sewage Sludge: A Systematic Review
by José Luis Cárdenas-Talero, Jorge Antonio Silva-Leal, Andrea Pérez-Vidal and Patricia Torres-Lozada
Sustainability 2022, 14(10), 5910; https://doi.org/10.3390/su14105910 - 13 May 2022
Cited by 22 | Viewed by 5253
Abstract
Various wastewater treatment technologies are available today and biological processes are predominantly used in these technologies. Increasing wastewater treatment systems produces large amounts of sewage sludge with variable quantities and qualities, which must be properly managed. Anaerobic and aerobic digestion and composting are [...] Read more.
Various wastewater treatment technologies are available today and biological processes are predominantly used in these technologies. Increasing wastewater treatment systems produces large amounts of sewage sludge with variable quantities and qualities, which must be properly managed. Anaerobic and aerobic digestion and composting are major strategies to treat this sludge. The main indicators of biological stabilization are volatile fatty acids (VFAs), volatile solids (VS), the carbon/nitrogen (C/N) ratio, humic substances (HS), the total organic carbon (TOC), the carbon dioxide (CO2) evolution rate, the specific oxygen uptake rate (SOUR), and the Dewar test; however, different criteria exist for the same indicators. Although there is no consensus for defining the stability of sewage sludge (biosolids) in the research and regulations reviewed, controlling the biological degradation, vector attraction, and odor determines the biological stabilization of sewage sludge. Because pollutants and pathogens are not completely removed in biological stabilization processes, further treatments to improve the quality of biosolids and to ensure their safe use should be explored. Full article
(This article belongs to the Special Issue Sludge: A Renewable Source for Energy and Resources Recovery)
Show Figures

Figure 1

18 pages, 13893 KiB  
Article
The Impact of Different Powdered Mineral Materials on Selected Properties of Aerobic Granular Sludge
by Joanna Czarnota, Adam Masłoń, Monika Zdeb and Grzegorz Łagód
Molecules 2020, 25(2), 386; https://doi.org/10.3390/molecules25020386 - 17 Jan 2020
Cited by 9 | Viewed by 3677
Abstract
This study aimed to evaluate and compare the physical, chemical and biological properties of aerobic granular sludge from reactors with the addition of different powdered mineral materials. These properties have a significant impact on the efficiency of systems in which the biomass in [...] Read more.
This study aimed to evaluate and compare the physical, chemical and biological properties of aerobic granular sludge from reactors with the addition of different powdered mineral materials. These properties have a significant impact on the efficiency of systems in which the biomass in granular form is used. Four identical granular sequencing batch reactors (GSBRs) were adopted for the research performed on a laboratory scale (R1—control reactor; R2, R3 and R4—with materials, PK, PG and PL respectively). The results indicate that the addition of powdered mineral materials improved the properties of biomass in reactors. The SVI5/SVI30 ratio values were significantly lower in the reactors with added materials (approx. 1.3 ± 0.3). The mean values of the sludge volume index at 30 min were the lowest in the R2 (39.8 ± 8.6 mL/g) and R4 (32.8 ± 10.7 mL/g) reactors. The settling velocity of biomass was the highest in the R2 reactor (15.4 ± 6.1 m/h). In the early days of the study, the highest extracellular polymeric substances (EPS) content was found in the biomass from the reactors to which the materials with higher Ca and Mg content were added (380.18–598.30 mg/g MLVSS). The rate of specific oxygen uptake (SOUR) by biomass indicated an insufficient biomass content in the R1 reactor—to 7.85 mg O2/(g MLVSS∙h)—while in the reactors with materials, the SOUR values were at the higher levels. Full article
(This article belongs to the Special Issue Advanced Materials and Technologies for Wastewater Treatment)
Show Figures

Figure 1

13 pages, 1304 KiB  
Article
Experimental Investigation of Substrate Shock and Environmental Ammonium Concentration on the Stability of Ammonia-Oxidizing Bacteria (AOB)
by Hareef Ahmed Keerio and Wookeun Bae
Water 2020, 12(1), 223; https://doi.org/10.3390/w12010223 - 13 Jan 2020
Cited by 16 | Viewed by 3435
Abstract
A wastewater treatment plant (WWTP) frequently encounters fluctuation in ammonium concentration or flow rate (Q), which may affect the stability of ammonium oxidizing bacteria (AOB). In this study, two continuous stirred tank reactors (CSTRs) were operated for 588 days and ammonium concentration was [...] Read more.
A wastewater treatment plant (WWTP) frequently encounters fluctuation in ammonium concentration or flow rate (Q), which may affect the stability of ammonium oxidizing bacteria (AOB). In this study, two continuous stirred tank reactors (CSTRs) were operated for 588 days and ammonium concentration was varied at various steady-state conditions. There was no inhibition observed in CSTR operation and AOB acclimated once at a certain ammonium concentration. Cells at an acclimated steady-state concentration (200 mgTAN/L from R(A) and 1000 mgTAN/L from R(B)) were extracted to perform a batch test at operating conditions, and self-inhibition behavior was observed in the batch reaction. In CSTR operation, the environmental ammonium concentration was varied and the specific oxygen uptake rate (SOUR) value was estimated from daily profile data and compared with batch reaction. In the CSTR operation as a substitute for self-inhibition, the SOUR was shifted towards the maximum specific oxygen uptake rate (SOURmax) and no self-inhibition was observed. For further justification of the CSTR’s stability, several total ammonium nitrogen (TAN) concentrations (range from ~−106 to ~+2550 mgTAN/L) were directly added to interrupt the stability of the process. As a substitute for any effect on the SOUR, the CSTRs were recovered back to the original stable steady-state conditions without varying the operational conditions. Full article
(This article belongs to the Special Issue Design, Operation and Economics of Wastewater Treatment Plant)
Show Figures

Figure 1

15 pages, 1192 KiB  
Article
Improvement of Digestate Stability Using Dark Fermentation and Anaerobic Digestion Processes
by Elena Albini, Isabella Pecorini and Giovanni Ferrara
Energies 2019, 12(18), 3552; https://doi.org/10.3390/en12183552 - 17 Sep 2019
Cited by 23 | Viewed by 3618
Abstract
This paper assessed the effect of dark fermentation, the fermentative phase in a two-stage anaerobic digestion system, in terms of digestate biostabilization efficiency. The digestates analyzed in this study were obtained from a pilot-scale system in which two different substrates were used in [...] Read more.
This paper assessed the effect of dark fermentation, the fermentative phase in a two-stage anaerobic digestion system, in terms of digestate biostabilization efficiency. The digestates analyzed in this study were obtained from a pilot-scale system in which two different substrates were used in order to simulate both the digestion and co-digestion process. Biostabilization performances were evaluated by measuring the specific oxygen uptake rate (SOUR) of the outgoing digestates. This index allowed us to define the degree of effectiveness in terms of stabilization of organic matter, between the traditional anaerobic digestion process and the two-stage configuration. Considering the traditional process as a reference scenario, the results highlighted an increase in biological stability for the two-stage co-digestion process, consisting of a dark fermentation stage, followed by an anaerobic digestion one. Digestates biostabilization efficiency increased up from 6.5% to 40.6% from the traditional one-stage configuration to the two-stage one by improving the anaerobic digestion process through a preliminary fermentative stage. The advantages of the two-stage process were due to the role of dark fermentation as a biological pre-treatment. Considering the partial stability results related to the second stage, biological stability was improved in comparison to a single-stage process, reaching an efficiency of 42.2% and 55.8% for the digestion and co-digestion scenario respectively. The dark fermentation phase allowed for a higher hydrolysis of the substrate, making it more easily degradable in the second phase. Results demonstrated better biostabilization performances of the outgoing digestates with the introduction of dark fermentation, resulting in more stable digestates for both the digestion and co-digestion process. Full article
(This article belongs to the Special Issue Biohydrogen Production Technologies and Application)
Show Figures

Figure 1

18 pages, 12156 KiB  
Article
Liquid-Phase Respiration Activity Assays to Assess Organic Waste Stability: A Comparison of Two Tests
by Alexandros Evangelou and Dimitrios Komilis
Sustainability 2018, 10(5), 1441; https://doi.org/10.3390/su10051441 - 5 May 2018
Cited by 5 | Viewed by 3575
Abstract
The stability of twenty-seven composts and organic substrates (including raw, less stable and stable materials) was assessed using two different liquid phase tests. One of the tests was introduced in 1998 and was based on the calculation of a Specific Oxygen Uptake Rate [...] Read more.
The stability of twenty-seven composts and organic substrates (including raw, less stable and stable materials) was assessed using two different liquid phase tests. One of the tests was introduced in 1998 and was based on the calculation of a Specific Oxygen Uptake Rate (SOUR). The newly introduced liquid phase test presented here is simpler to set-up and to perform than the older liquid phase test and is more representative of the composting process due to its longer experimental duration. It is based on the quantification of oxygen consumption in the headspace of a BOD bottle that contains the liquid-solid solution. The results indicate that a marginal correlation does exist between the main indices calculated from both tests. The correlation was slightly stronger for the indices calculated from the raw materials than from the processed ones. The correlation calculated from the processed substrates was statistically insignificant. The SOUR ranged from 1520 to 3650 mg O2/kg VS-h for the raw materials and from 110 to 1150 mg O2/kg VS-h for the processed materials, respectively. The corresponding stability rate related index (LSRI24) of the new liquid phase test introduced here ranged from 240 to 1180 mg O2/dry kg-h for the raw materials and from 64 to 792 mg O2/dry kg-h for the processed ones. Full article
(This article belongs to the Collection Organic Waste Management)
Show Figures

Figure 1

Back to TopTop