Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = spatial–spectral weight manifold embedding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 7704 KiB  
Article
Dimensionality Reduction of Hyperspectral Images Based on Improved Spatial–Spectral Weight Manifold Embedding
by Hong Liu, Kewen Xia, Tiejun Li, Jie Ma and Eunice Owoola
Sensors 2020, 20(16), 4413; https://doi.org/10.3390/s20164413 - 7 Aug 2020
Cited by 14 | Viewed by 2697
Abstract
Due to the spectral complexity and high dimensionality of hyperspectral images (HSIs), the processing of HSIs is susceptible to the curse of dimensionality. In addition, the classification results of ground truth are not ideal. To overcome the problem of the curse of dimensionality [...] Read more.
Due to the spectral complexity and high dimensionality of hyperspectral images (HSIs), the processing of HSIs is susceptible to the curse of dimensionality. In addition, the classification results of ground truth are not ideal. To overcome the problem of the curse of dimensionality and improve classification accuracy, an improved spatial–spectral weight manifold embedding (ISS-WME) algorithm, which is based on hyperspectral data with their own manifold structure and local neighbors, is proposed in this study. The manifold structure was constructed using the structural weight matrix and the distance weight matrix. The structural weight matrix was composed of within-class and between-class coefficient representation matrices. These matrices were obtained by using the collaborative representation method. Furthermore, the distance weight matrix integrated the spatial and spectral information of HSIs. The ISS-WME algorithm describes the whole structure of the data by the weight matrix constructed by combining the within-class and between-class matrices and the spatial–spectral information of HSIs, and the nearest neighbor samples of the data are retained without changing when embedding to the low-dimensional space. To verify the classification effect of the ISS-WME algorithm, three classical data sets, namely Indian Pines, Pavia University, and Salinas scene, were subjected to experiments for this paper. Six methods of dimensionality reduction (DR) were used for comparison experiments using different classifiers such as k-nearest neighbor (KNN) and support vector machine (SVM). The experimental results show that the ISS-WME algorithm can represent the HSI structure better than other methods, and effectively improves the classification accuracy of HSIs. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

18 pages, 2141 KiB  
Article
A Superpixel-Based Relational Auto-Encoder for Feature Extraction of Hyperspectral Images
by Miaomiao Liang, Licheng Jiao and Zhe Meng
Remote Sens. 2019, 11(20), 2454; https://doi.org/10.3390/rs11202454 - 22 Oct 2019
Cited by 17 | Viewed by 3935
Abstract
Filter banks transferred from a pre-trained deep convolutional network exhibit significant performance in heightening the inter-class separability for hyperspectral image feature extraction, but weakening the intra-class consistency simultaneously. In this paper, we propose a new superpixel-based relational auto-encoder for cohesive spectral–spatial feature learning. [...] Read more.
Filter banks transferred from a pre-trained deep convolutional network exhibit significant performance in heightening the inter-class separability for hyperspectral image feature extraction, but weakening the intra-class consistency simultaneously. In this paper, we propose a new superpixel-based relational auto-encoder for cohesive spectral–spatial feature learning. Firstly, multiscale local spatial information and global semantic features of hyperspectral images are extracted by filter banks transferred from the pre-trained VGG-16. Meanwhile, we utilize superpixel segmentation to construct the low-dimensional manifold embedded in the spectral domain. Then, representational consistency constraint among each superpixel is added in the objective function of sparse auto-encoder, which iteratively assist and supervisedly learn hidden representation of deep spatial feature with greater cohesiveness. Superpixel-based local consistency constraint in this work not only reduces the computational complexity, but builds the neighborhood relationships adaptively. The final feature extraction is accomplished by collaborative encoder of spectral–spatial feature and weighting fusion of multiscale features. A large number of experimental results demonstrate that our proposed method achieves expected results in discriminant feature extraction and has certain advantages over some existing methods, especially on extremely limited sample conditions. Full article
Show Figures

Graphical abstract

18 pages, 4651 KiB  
Article
Fusion of Multispectral and Panchromatic Images via Spatial Weighted Neighbor Embedding
by Kai Zhang, Feng Zhang and Shuyuan Yang
Remote Sens. 2019, 11(5), 557; https://doi.org/10.3390/rs11050557 - 7 Mar 2019
Cited by 20 | Viewed by 5531
Abstract
Fusing the panchromatic (PAN) image and low spatial-resolution multispectral (LR MS) images is an effective technology for generating high spatial-resolution MS (HR MS) images. Some image-fusion methods inspired by neighbor embedding (NE) are proposed and produce competitive results. These methods generally adopt Euclidean [...] Read more.
Fusing the panchromatic (PAN) image and low spatial-resolution multispectral (LR MS) images is an effective technology for generating high spatial-resolution MS (HR MS) images. Some image-fusion methods inspired by neighbor embedding (NE) are proposed and produce competitive results. These methods generally adopt Euclidean distance to determinate the neighbors. However, closer Euclidean distance is not equal to greater similarity in spatial structure. In this paper, we propose a spatial weighted neighbor embedding (SWNE) approach for PAN and MS image fusion, by exploring the similar manifold structures existing in the observed LR MS images to those of HR MS images. In SWNE, the spatial neighbors of the LR patch are found first. Second, the weights of these neighbors are estimated by the alternative direction multiplier method (ADMM), in which the neighbors and their weights are determined simultaneously. Finally, the HR patches are reconstructed by the sum of HR patches corresponding to the LR patches multiplying with their weights. Due to the introduction of spatial structures in objective function, outlier patches can be eliminated effectively by ADMM. Compared with other methods based on NE, more reasonable neighbor patches and their weights are estimated simultaneously. Some experiments are conducted on datasets collected by QuickBird and Geoeye-1 satellites to validate the effectiveness of SWNE, and the results demonstrate a better performance of SWNE in spatial and spectral information preservation. Full article
(This article belongs to the Special Issue Multispectral Image Acquisition, Processing and Analysis)
Show Figures

Graphical abstract

Back to TopTop