Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = southwest Bulgaria

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2770 KiB  
Article
Soil Structure Characteristics in Three Mountainous Regions in Bulgaria Under Different Land Uses
by Milena Kercheva, Tsvetina Paparkova, Emil Dimitrov, Katerina Doneva, Kostadinka Nedyalkova, Jonita Perfanova, Rosica Sechkova, Emiliya Velizarova and Maria Glushkova
Forests 2025, 16(7), 1065; https://doi.org/10.3390/f16071065 - 26 Jun 2025
Viewed by 288
Abstract
Soil structure has an important role in storing and transporting substances, providing natural habitats for soil microorganisms, and allowing chemical reactions in the soil. A complex investigation on factors affecting soil structure characteristics under herbaceous (H), deciduous (D), mixed (M), and coniferous (SP—Scots [...] Read more.
Soil structure has an important role in storing and transporting substances, providing natural habitats for soil microorganisms, and allowing chemical reactions in the soil. A complex investigation on factors affecting soil structure characteristics under herbaceous (H), deciduous (D), mixed (M), and coniferous (SP—Scots Pine and NS—Norway Spruce) vegetation was conducted at three experimental stations—Gabra, Govedartsi, and Igralishte, located correspondingly in the Lozenska, Rila, and Maleshevska Mountains in South-West Bulgaria. The data set obtained includes soil structure indicators and physical, physicochemical, chemical, mineralogical, and microbiological parameters of the A and AC horizons of 11 soil profiles. Under different vegetation conditions, soil structure indicators respond differently depending on climatic conditions and basic soil properties. Regarding the plant available water capacity (PAWC), air capacity (AC), and water-stable aggregates (WSAs), the surface soil layers have an optimal structure in Gabra (H, D), Govedartsi (H, SP, NS), and Igralishte (H). The values for the relative field capacity (RFC < 0.6) showed that the studied soils were water-limited. The WSAs correlated with SOC in Gabra, while in Govedartsi and Igralishte, the WSAs correlated with the β-glucosidase known to hydrolyze organic carbon compounds in soil. The information obtained is important for soil quality monitoring under climatic and anthropogenic changes. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

19 pages, 9204 KiB  
Article
Drought Dynamics and Drought Hazard Assessment in Southwest Bulgaria
by Nina Nikolova, Kalina Radeva, Leonid Todorov and Simeon Matev
Atmosphere 2024, 15(8), 888; https://doi.org/10.3390/atmos15080888 - 25 Jul 2024
Cited by 4 | Viewed by 2206
Abstract
Awareness of the potential threat posed by drought necessitates the implementation of appropriate procedures to enable effective and systematic actions aimed at mitigating, or at least partially limiting, the impacts of drought events. This paper seeks to analyze the spatial and temporal changes [...] Read more.
Awareness of the potential threat posed by drought necessitates the implementation of appropriate procedures to enable effective and systematic actions aimed at mitigating, or at least partially limiting, the impacts of drought events. This paper seeks to analyze the spatial and temporal changes of atmospheric drought in the period 1961–2020 and assesses drought hazards in southwest Bulgaria, which is a region susceptible to periodic water shortages. In this study, the standardized precipitation evaporation index (SPEI), accounting for both precipitation and temperature changes, was used to analyze drought characteristics. The analysis reveals significant temporal changes and spatial differences in drought patterns across southwest Bulgaria. The northeastern part of the region, including the Sofia district, exhibits the lowest risk of drought, while the central part of the region shows a tendency toward moderate and occasional low drought events. Some stations, particularly in the southern part of the region, consistently experienced more severe drought conditions (Blagoevgrad and Sandanski), as indicated by negative SPEI values in different time scales (3, 6, and 12 months). Results indicate an increased frequency of droughts during 1990–2020 compared to 1961–1990, which was driven by climate change and human activities. Across all stations and in both SPEI time scales, the period from the early to mid-1990s was characterized by significant droughts. The study of drought hazards using short-term and long-term SPEI analysis reveals different levels of drought risk and increased hazard from the northern to southern parts of the study area. The share of areas with a high drought hazard exceeds 40% of the territory in the areas with a transitional and continental-Mediterranean climate. Based on the results, the paper highlights the need to integrate drought risk assessments with regional planning to improve agricultural resilience and water resource management in response to anticipated droughts, especially in drought-prone areas such as southwest Bulgaria. Full article
Show Figures

Figure 1

19 pages, 3997 KiB  
Article
Relations between High Anticyclonic Atmospheric Types and Summer Season Temperature in Bulgaria
by Vulcho Pophristov, Nina Nikolova, Simeon Matev and Martin Gera
Atmosphere 2024, 15(6), 620; https://doi.org/10.3390/atmos15060620 - 21 May 2024
Viewed by 1094
Abstract
The atmospheric circulation, not only near the surface but also at high altitudes, is probably the main factor determining the weather and climate of a given area, along with its latitude, altitude, the shape of the relief of the area and its surroundings, [...] Read more.
The atmospheric circulation, not only near the surface but also at high altitudes, is probably the main factor determining the weather and climate of a given area, along with its latitude, altitude, the shape of the relief of the area and its surroundings, and the proximity of water basins of different sizes. The main objective of this study is to investigate the relationship between anticyclonic circulation types in the middle troposphere at the 500 hPa level and the seasonal summer temperature over the region of the central Balkan Peninsula, particularly Bulgaria. A previously compiled classification of atmospheric circulation is used, and the frequencies of the circulation types are correlated with the mean seasonal (monthly) temperature, where the extreme seasons and months are defined as the 10th percentile for cold summer seasons and months and the 90th percentile for warm ones. A positive and statistically significant correlation was found for the anticyclones located southwest of Bulgaria and a negative one for those located southeast of it. A comparison between the last two 30-year climatological periods (1961–1990 and 1991–2020) was also made, and an irrefutable decrease in the number of cold summer seasons from 257 to just 17 was found in the last 30 years, respectively, as well as a rapid increase in the number of extreme warm summer seasons from 26 to 263, encompassing all 15 meteorological stations studied. Full article
Show Figures

Figure 1

16 pages, 1527 KiB  
Article
Fog in Sofia 2010–2019: Objective Circulation Classification and Fog Indices
by Nikolay Penov, Anastasiya Stoycheva and Guergana Guerova
Atmosphere 2023, 14(5), 773; https://doi.org/10.3390/atmos14050773 - 24 Apr 2023
Cited by 6 | Viewed by 2234
Abstract
Low visibility caused by fog events can lead to disruption of every type of public transportation, and even loss of life. The focus of this study is the synoptic conditions associated with fog formation. The data used in this study was collected over [...] Read more.
Low visibility caused by fog events can lead to disruption of every type of public transportation, and even loss of life. The focus of this study is the synoptic conditions associated with fog formation. The data used in this study was collected over the course of ten years (2010–2019) in Sofia, Bulgaria. The forecast skills of the Fog Stability Index (FSI) and the local Sofia Stability Index (SSI), as well as the relation between the Integrated Water Vapor (IWV) and fog from the Global Navigation Satellite System (GNSS), were tested. Both fog indices are used for fog nowcasting as their lead times are short and unclear. The Jenkinson–Collison Type method was used for extracting the predominant synoptic-scale pressure systems which provide suitable weather conditions for fog formation. Surface observations from two synoptic stations were used to calculate and evaluate the performance of the two fog indices and of the ground-based GNSS receiver for the IWV. The forecast skills provided by Probability of Detection (POD) and False Alarm Ratio (FAR), for both fog and no-fog periods, were obtained by discriminant analysis. Additionally, several weather parameters, such as surface wind speed, relative humidity and IWV, were added in order to improve the results of the local index (SSI). This led to a 77.9% hit rate. The cyclonic system influence and zonal flows from the west and the southwest are both responsible for a number of fog cases that are comparable to those associated with the anticyclonic system. The IWV was not found to improve the forecast skill of the fog indices. However, it was found that its values had a larger spread during no-fog periods in comparison to fog periods. Full article
(This article belongs to the Special Issue Decision Support System for Fog)
Show Figures

Graphical abstract

Back to TopTop