Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = southern North China Block

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 9622 KiB  
Article
Provenance of the Upper Paleozoic Shihezi Formation in the Luonan Region of the Qinling Orogenic Belt and Its Tectonic Implications
by Yuliang Duan, Wenqi Pan, Xi Zhang, Zhengtao Zhang, Yi Ding, Ziwen Jiang, Zhichao Li, Lamao Meiduo, Weiran Zhao and Wenhou Li
Minerals 2025, 15(5), 549; https://doi.org/10.3390/min15050549 - 21 May 2025
Viewed by 322
Abstract
This study investigates the provenance of the Permian Shihezi Formation (Fm) siliciclastic sediments in the Luonan area, southern margin of the North China Block, which constrain the sediment sources and tectonic evolution of the basin. Our research investigates the heavy mineral characteristics, geochemical [...] Read more.
This study investigates the provenance of the Permian Shihezi Formation (Fm) siliciclastic sediments in the Luonan area, southern margin of the North China Block, which constrain the sediment sources and tectonic evolution of the basin. Our research investigates the heavy mineral characteristics, geochemical features, detrital zircon U-Pb geochronology, and Lu-Hf isotope tracing the provenance characteristics of the Shihezi Fm in this region. Zircon yielded three distinct U-Pb age groups as follows: 320–300 Ma, 1950–1850 Ma, and 2550–2450 Ma. The εHf(t) values of zircons ranged from −41 to 50, and the two–stage Hf model’s ages (TDM2) values are concentrated between 3940 Ma and 409 Ma, suggesting that magmatic sources likely derive from Early Archaean–Devonian crustal materials. The heavy mineral assemblages are primarily composed of zircon, leucoxene, and magnetite. Further geochemical analyses of the rocks indicate a diverse provenance area and a complex tectonic evolution. Taken together, these results suggest that the provenance of the Shihezi Fm is from the North China Block, with secondary contributions from the Qinling Orogenic Belt and the North Qilian Orogenic Belt. The provenance of Luonan shares similarities with the southern Ordos Basin. Investigating the provenance of the Luonan area along the southern margin of the North China Craton provides critical supplementary constraints for shedding light on the Late Paleozoic tectonothermal events in the Qinling Orogenic Belt. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

20 pages, 13571 KiB  
Article
Geochemistry and U–Pb Chronology of the Triassic Yanchang Formation in the Southern Ordos Basin, China: Implications for Provenance and Geological Setting
by Fenhong Luo, Hujun Gong, Hang Liu, Bin Lv and Dali Xue
Minerals 2025, 15(3), 233; https://doi.org/10.3390/min15030233 - 26 Feb 2025
Viewed by 544
Abstract
During the deposition of the Middle–Upper Triassic Yanchang Formation, the southern margin of the Ordos Basin (OB) serves as a critical area for investigating the tectonic interactions between the North China Block (NCB) and Qinling Orogenic Belt (QOB). The provenance record of this [...] Read more.
During the deposition of the Middle–Upper Triassic Yanchang Formation, the southern margin of the Ordos Basin (OB) serves as a critical area for investigating the tectonic interactions between the North China Block (NCB) and Qinling Orogenic Belt (QOB). The provenance record of this sedimentary succession can be utilized to trace basin–mountain interactions using petrological, geochemical, and zircon age geochronological studies. We analyzed lithic fragments, geochemistry, and detrital zircon U–Pb ages of samples from the Xunyi Sanshuihe field profile, Weibei Uplift. Discrimination diagrams of major and trace elements revealed provenances and tectonic-sedimentary settings. Middle–Upper Triassic sandstones comprise quartz, feldspar, and lithic fragments. Their compositions are plotted within recycled orogenic and magmatic arc provenance fields. Multiple element diagrams reveal a felsic igneous rock provenance. Detrital zircon age spectra display four prominent age groups, which are ca. 240–270, 410–450, 1800–2200, and 2400–2600 Ma, and one minor age group, that is, 870–1197 Ma in the Late Triassic sample. We conclude that the provenance of the Yanchang Formation changed significantly during the Middle–Late Triassic. The Late Triassic sediments were mainly QOB-derived, and the basement was from the NCB. The pre-Triassic strata and Longmen pluton in the southwest of OB were the provenance of Middle Triassic sediments. The QOB suffered rapid uplift and denudation, resulting in rapid deposition and deep-water deposition in the southern OB, which provides excellent conditions for the high-quality oil shale of Ch 7. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

17 pages, 5415 KiB  
Article
Formation and Precipitation Processes of the Southwest Vortex Impacted by the Plateau Vortex
by Aijuan Bai, Jinfeng Bai, Zhao Wang and Chaoyong Tu
Atmosphere 2025, 16(2), 115; https://doi.org/10.3390/atmos16020115 - 22 Jan 2025
Cited by 1 | Viewed by 799
Abstract
This study investigated the source, trajectory, and precipitation of the Southwest (SW) vortex, which was linked with the Plateau (P) vortex. Based on the statistical study of a number of cases, this study showed the following results. The SW vortex tended to originate [...] Read more.
This study investigated the source, trajectory, and precipitation of the Southwest (SW) vortex, which was linked with the Plateau (P) vortex. Based on the statistical study of a number of cases, this study showed the following results. The SW vortex tended to originate at the northeastern and western peripheries of the Sichuan Basin, normally coinciding with the presence of the P vortices in the eastern region of the Tibetan Plateau. Most of the aforementioned vortices exhibited a longer life span, and resulted in severe storms averaging approximately 50 mm of rainfall per day, especially in the cases of more than 100 mm of rainfall per day in eastern and southern China. Furthermore, new findings were obtained: (1) The SW vortex and the P vortex were attributed from an ‘Ω’ circulation pattern from blocking high in middle to high latitudes region. The SW vortex was notably influenced by the convergence of two air currents. In the lower troposphere, the southwesterly jet of the South Asian monsoon flowed over and around the Yungui Plateau, and cold–dry air from the north flowed into the Basin. (2) Both the SW vortex and the P vortex displayed a shallow synoptic system characterized below 500 hPa, and wet–cold cores formed around the sources at low altitudes. (3) The analysis on atmospheric instability and dynamics suggested that the vortices’ eddies generated significant convective instability at lower levels. The circulation pattern and instability conditions facilitated the heavy precipitation associated with the SW vortex, and the ample water vapor and subsequent latent heat intensified the precipitation. Full article
(This article belongs to the Special Issue Data Analysis in Atmospheric Research)
Show Figures

Figure 1

21 pages, 37380 KiB  
Article
A 3D Seismotectonic Model and the Spatiotemporal Relationship of Two Historical Large Earthquakes in the Linfen Basin, North China
by Zhaowu Guo, Renqi Lu, Zhujun Han, Guanshen Liu, Feng Shi, Jing Yang and Xiaobing Yan
Appl. Sci. 2024, 14(18), 8412; https://doi.org/10.3390/app14188412 - 19 Sep 2024
Viewed by 1401
Abstract
The Shanxi Graben is a transitional zone between the Ordos Block and North China Plain with complex structures and frequent earthquakes. Six earthquakes with M ≥ 7.0 have been recorded in the area, including the 1303 Hongtong M 8 and 1695 Linfen M [...] Read more.
The Shanxi Graben is a transitional zone between the Ordos Block and North China Plain with complex structures and frequent earthquakes. Six earthquakes with M ≥ 7.0 have been recorded in the area, including the 1303 Hongtong M 8 and 1695 Linfen M 7.8 earthquakes in the Linfen Basin. Research on these two large earthquakes, closely related in time and space, is lacking. Our objective was to use deep seismic reflection profiles and 3D velocity structure data from previous research, along with seismological observation results, to interpret the geological structure near the source of the two earthquakes. A 3D geometric model of the seismogenic fault was constructed, and the relationships among the deep and shallow structures, deep seismogenic environment, and two large earthquakes were explored. Differences in seismogenic environment between the southern and northern Linfen Basin were identified. The distribution of small earthquakes in the southern Linfen Basin was scattered, and the overall distribution was at depths <25 km. The small earthquakes in the northern part of the basin were dense and concentrated at depths of 25–35 km. Low-velocity layers at an approximate depth of 15–20 km in the southern basin led to differences in seismogenesis between the two regions. Based on the area of the 3D geometric model of the Huoshan Fault, the maximum magnitude of an earthquake caused by fault rupture is Mw 7.7, so the magnitude of the 1303 Hongtong earthquake might be overestimated. Numerical simulation results of Coulomb stress showed that the 1303 Hongtong earthquake had a stress-loading effect on the 1695 Linfen earthquake. The change in Coulomb rupture stress was 1.008–2.543 bar, which is higher than the generally considered earthquake trigger threshold (0.1 bar). We created a new 3D source model of large earthquakes in the Linfen Basin, Shanxi Province, providing a reference and typical cases for risk assessment of large earthquakes in different regions of the Shanxi Graben. Full article
(This article belongs to the Special Issue Paleoseismology and Disaster Prevention)
Show Figures

Figure 1

14 pages, 5761 KiB  
Article
Hydrogeochemical Characteristics and Formation Processes of Ordovician Limestone Groundwater in Zhuozishan Coalfield, Northwest China
by Shidong Wang, Tiantian Wang, Zhibin Yang, Hongwei Tang, Hanjiang Lv, Feng Xu, Kaipeng Zhu and Ziyuan Liu
Water 2024, 16(17), 2398; https://doi.org/10.3390/w16172398 - 26 Aug 2024
Viewed by 963
Abstract
A comprehensive understanding of the characteristics and formation mechanisms of groundwater in mining areas is essential for the effective prevention of coal mine water and the rational management of groundwater resources. The objective of this study was to examine the hydrogeochemical characteristics and [...] Read more.
A comprehensive understanding of the characteristics and formation mechanisms of groundwater in mining areas is essential for the effective prevention of coal mine water and the rational management of groundwater resources. The objective of this study was to examine the hydrogeochemical characteristics and evolution of Ordovician groundwater in the Zhuozishan coal mine, located in the northwest region of China. A total of 34 groundwater samples were collected for hydrogeochemical analyses and the investigation of their evolution processes, with the aid of a piper trilinear diagram, a Gibbs diagram, and an ion ratio diagram. The results indicate that the concentration of sodium (Na+), potassium (K+), bicarbonate (HCO3), chloride (Cl), sulphate (SO42), total dissolved solids (TDS), and pH increases from the recharge area to the discharge area, whereas the concentration of calcium (Ca2+) and magnesium (Mg2+) decreases. The hydrogeochemical characteristics of the runoff from Zhuozishan to Gongdeer coalfield and further southward display a notable north–south directional change. The groundwater process is primarily controlled by rock weathering action and cation exchange, with Na+ and K+ deriving primarily from cation exchange and only to a minor extent from halite dissolution. In conclusion, the northern part of the coalfield is characterised by a geological structure that creates a retention area with groundwater, resulting in an unordered runoff process with a complex formation mechanism. The middle region is devoid of geological constraints that would alter the flow direction, thus simplifying the process of groundwater formation. In contrast, the southern area experiences an increase in strata depth and fault blocking, which creates a retention zone, thereby rendering the groundwater formation process more complex. This research contributes to the effective management of groundwater resources in this coalfield and other mining sites. Full article
Show Figures

Figure 1

20 pages, 10908 KiB  
Article
A Complex Meso–Cenozoic History of Far-Field Extension and Compression: Evidence from Fission Track Analysis in the Helanshan Mountain Tectonic Belt, NW China
by Cheng Wu, Yu Wang, Wanming Yuan and Liyun Zhou
Appl. Sci. 2024, 14(9), 3559; https://doi.org/10.3390/app14093559 - 23 Apr 2024
Cited by 1 | Viewed by 1243
Abstract
The Helanshan Mountain tectonic belt (HTB) is an intraplate deformation belt along the northwestern border of the Ordos Block in the North China Craton. When and why this intracontinental tectonic belt formed, its subsequent uplift and erosion, and the relationships between ranges and [...] Read more.
The Helanshan Mountain tectonic belt (HTB) is an intraplate deformation belt along the northwestern border of the Ordos Block in the North China Craton. When and why this intracontinental tectonic belt formed, its subsequent uplift and erosion, and the relationships between ranges and adjacent basins remain unclear. To better assess the connections between the temporal and structural activity in HTB, apatite fission-track (AFT) and zircon fission-track (ZFT) analyses were conducted in this study. The lack of adequate FT data from the HTB is a source of contention and dispute. This paper collected samples for AFT and ZFT techniques from the central and southern HTB, trying to improve the research. The ZFT and AFT ages could be divided into the following 7 groups: 279 Ma, 222–213 Ma, 193–169 Ma, 151–147 Ma, 130–109 Ma, 92–77 Ma, and 65–50 Ma. The inverse modeling results of AFT indicate 4 fast cooling episodes of 170–120 Ma, 120–95 Ma, 66–60 Ma, and ~10–8 Ma to the present. Combining the results of FT analysis with radial plot and inverse modeling of AFT, the following eight age groups are believed to reveal the distinct tectonic activities in HTB: the first age group of 279 Ma mainly represented the back-arc extension of the southern HTB; the age group of 222–213 Ma was bounded with NNE-SSE trending contraction between the South China block and North China Craton; the event of 193–169 Ma responded to the post-orogenic collapse followed after the second event; the 151–147 Ma group was interpreted as the eastward extrusion induced by the subduction between Qiangtang and Lhasa blocks; the Early Cretaceous (130–109 Ma) group was not only affected by the rollback of the Pacific Plate, but also denoted the collapse of the thickened lithosphere formed in the Late Jurassic; the Late Cretaceous (92–77 Ma) group was attributed to long-distance impact from the subduction of the Pacific Plate beneath the Eurasian Plate; the event during 65–50 Ma was a correspondence to far-field effect of the onset collision between the Eurasian and Indian Plates; and from 10–8 Ma to the present, the progressive collision of the Indian and Eurasian Plates have a significant impact on the HTB and the northeastern Tibetan Plateau. Full article
(This article belongs to the Special Issue New Advances, Challenges, and Illustrations in Applied Geochemistry)
Show Figures

Figure 1

25 pages, 28317 KiB  
Article
Provenance of the Upper Carboniferous Yanghugou Formation in the Western Margin of the Ordos Basin, China: Constraints on Paleogeography and Basin Development
by Tao Zhang, Rong Chen, Feng Wang, Jianling Hu, Min Zhang, Qian Li, Jingyi Wu and Lei Liu
Minerals 2024, 14(1), 78; https://doi.org/10.3390/min14010078 - 10 Jan 2024
Cited by 2 | Viewed by 1815
Abstract
The Carboniferous Yanghugou Formation in the western margin of the Ordos Basin exhibits significant potential for oil and gas exploration. However, due to the influence of complex tectonic activities, there are substantial variations in stratigraphic thickness and depositional environments across the formation. The [...] Read more.
The Carboniferous Yanghugou Formation in the western margin of the Ordos Basin exhibits significant potential for oil and gas exploration. However, due to the influence of complex tectonic activities, there are substantial variations in stratigraphic thickness and depositional environments across the formation. The lack of a systematic source–sink comparative study has resulted in an unclear understanding of sediment sources and paleogeographic patterns, impacting the exploration for hydrocarbon accumulations. We conducted a comprehensive study of the source–sink system characteristics and paleogeography in the research area through field outcrop observations and drilling core sampling. By utilizing detrital zircon U–Pb geochronology and geochemistry, paleocurrent directions, lithofacies types, and sedimentary features, we delve into the understanding of the source–sink systems. Four major source–sink regions in the research area were identified: the Alxa, Yinshan, Alxa–Yinshan mixed and Qilian source–sink regions. The Alxa source–sink region formed a transitional delta-barrier-island sedimentary system. The northern part of the Yinshan source–sink region developed a transitional tidal-controlled delta-tidal-flat sedimentary system, while the southern deep-water area developed a shallow marine to semi-deep marine shelf sedimentary systems. The sediments of Alxa–Yinshan mixed source–sink region were deposited in a transitional tidal-controlled delta-tidal-flat barrier-island system. The Qilian source–sink region is characterized by small tidal-controlled delta-barrier-island system. From the analysis of the source–sink systems, it is inferred that the Alxa Block and the North China Craton had already merged before deposition of the late Carboniferous Yanghugou Formation. The delta sand bodies in the Alxa–Yinshan mixed source–sink region have the highest compositional and structural maturity, the best reservoir performance, and the great exploration potential. Full article
Show Figures

Graphical abstract

19 pages, 4085 KiB  
Article
Meso–Cenozoic Exhumation in the South Qinling Shan (Central China) Recorded by Detrital Apatite Fission-Track Dating of Modern River Sediments
by Xu Lin, Jing Liu-Zeng, Lin Wu, Soares Jose Cleber, Dongliang Liu, Jingen Dai, Chengwei Hu, Xiaokang Chen, Lingling Li and Liyu Zhang
Minerals 2023, 13(10), 1314; https://doi.org/10.3390/min13101314 - 11 Oct 2023
Cited by 7 | Viewed by 2147
Abstract
The Qinling Shan is located between the North China Craton and the South China Block. Not only is investigating the exhumation process of the Qinling Shan beneficial for comprehending the tectonic collision history of mainland China but also for enhancing our understanding of [...] Read more.
The Qinling Shan is located between the North China Craton and the South China Block. Not only is investigating the exhumation process of the Qinling Shan beneficial for comprehending the tectonic collision history of mainland China but also for enhancing our understanding of the development of the Yellow and Yangtze Rivers. Previous studies have predominantly focused on bedrock analysis in the Qinling Shan. However, modern fluvial detrital samples offer a more extensive range of thermal history information. Therefore, we gathered modern fluvial debris samples from the Hanjiang River, which is the largest river in the South Qinling Shan. Subsequently, we conducted apatite fission-track analysis using the laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) method. A total of 214 valid track ages were obtained, with an age distribution ranging from 9.5 to 334.0 Ma. The Density Plotter software was employed to decompose the data and generate four prominent age peaks: 185, 103, 69, 35, and 12 Ma. The exhumation events of the Early Jurassic (185 Ma) and Cretaceous (103–69 Ma) in the Southern Qinling Shan were strongly influenced by the collision between the South China Block and the North China Craton, as well as the subduction of the West Pacific Plate, respectively. The far-field effect of the collision between the Indian Plate and the southern Asian continent influenced the exhumation of the South Qinling Shan during the Late Eocene (35 Ma) and Middle Miocene (12 Ma), respectively. In conjunction with the reported findings, we comprehensively analyzed the geological implications of the Mesozoic and Cenozoic exhumations of the Qinling Shan. The Qinling Shan emerged as a watershed between the Ordos and Sichuan Basins in the early Mesozoic and Cenozoic, respectively. However, the exhumation and expansion of the Tibetan Plateau has forced the Yangtze River to flow eastward, resulting in its encounter with the South Qinling Shan in the late Cenozoic. The exhumation of the Qinling Shan has resulted in fault depression in the southern Ordos Basin. This geological process has also contributed to the widespread arid climatic conditions in the basin. During the Miocene, the Yellow River experienced limited connectivity due to a combination of structural and climatic factors. As a result, the Qinling Shan served as an obstacle, dividing the connected southern Yangtze River from the northern segment of the Yellow River during the late Cenozoic era. Full article
(This article belongs to the Special Issue Low-Temperature Thermochronology and Its Applications to Tectonics)
Show Figures

Figure 1

18 pages, 16934 KiB  
Article
Present-Day Tectonic Stress Evolution in Southern Yunnan Based on Focal Mechanisms
by Wenjie Fan, Ye Zhu, Yingfeng Ji, Lili Feng, Weiling Zhu and Rui Qu
Sensors 2023, 23(17), 7406; https://doi.org/10.3390/s23177406 - 25 Aug 2023
Cited by 2 | Viewed by 1842
Abstract
Tectonic extrusion bypassing the eastern Himalayan syntaxis results in a significant increase in regional stress instability and the associated frequent occurrence of earthquakes in southern Yunnan, China. However, the stress field, and the relationship between the focal mechanism of earthquakes and stress evolution [...] Read more.
Tectonic extrusion bypassing the eastern Himalayan syntaxis results in a significant increase in regional stress instability and the associated frequent occurrence of earthquakes in southern Yunnan, China. However, the stress field, and the relationship between the focal mechanism of earthquakes and stress evolution in southern Yunnan, remain enigmatic. In this paper, using a modified grid point test method, we calculated the focal mechanism of ML ≥ 2.5 earthquakes in southern Yunnan (22–25° N, 100–104° E) from January 2009 to June 2023. Utilizing the solutions of historical earthquake focal mechanisms, we obtained the present-day regional tectonic stress field in southern Yunnan via inversion. The results indicate complex and diverse seismic focal mechanisms, and the main types of earthquakes are strike-slip events, followed by normal fault and reverse fault events. The orientations of the maximum and minimum principal stress axes rotate in a clockwise direction from northeast to southwest. The internal stress orientation distribution of the rhombic Sichuan–Yunnan block in the study area is consistent, and the block boundary zone is the site where stress deflection occurs, and the regional tectonic stress field is influenced by the interaction among different blocks. The distribution of R-value in the Lamping–Simao block gradually increases from north to south, indicating that the compressive stress required for material transport becomes relatively small. Combined with the geological and tectonic background of the study area, our results suggest that the speed of block movement gradually decreases from north to south; the distribution of R-value in the South China block is significantly smaller than that of the interior of the Sichuan–Yunnan rhombus, and the proportion of compressive stresses is larger, indicating a stronger extrusion in this region, which may be related to the fact that the Sichuan–Yunnan rhombus is strongly resisted by the South China block in the east. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

26 pages, 5496 KiB  
Article
A Simulation Study on the Influence of Street Tree Configuration on Fine Particulate Matter (PM2.5) Concentration in Street Canyons
by Junyou Liu and Bohong Zheng
Forests 2023, 14(8), 1550; https://doi.org/10.3390/f14081550 - 28 Jul 2023
Cited by 7 | Viewed by 2051
Abstract
Because motor vehicles emit a large amount of PM2.5 pollution, traffic-related emissions have always been an important part of PM2.5 pollution. To better understand the influence of street trees on traffic-related PM2.5 pollution, our study focused on camphor trees, common [...] Read more.
Because motor vehicles emit a large amount of PM2.5 pollution, traffic-related emissions have always been an important part of PM2.5 pollution. To better understand the influence of street trees on traffic-related PM2.5 pollution, our study focused on camphor trees, common evergreen urban street trees in central and southern China. We used ENVI-met for the simulation of PM2.5 pollution and to build a model to show the distribution of PM2.5 pollution along a section of Xinyao North Road in downtown Changsha City in central China. Based on this model, we constructed four other models with different heights, quantities, and distances between street trees, where each model had high feasibility and aimed to determine how these affect the PM2.5 concentration on the designated block. We performed simulations within different time frames in the year. We found that the wind can promote the diffusion of PM2.5 in the street canyon. Too dense a distribution of tall street trees will have a negative impact on PM2.5 concentration in street canyons. A moderate distance between street trees is conducive to the dispersion of pollutants. Because the crown of 5 m high street trees is small, its negative impact on the dispersion of wind and PM2.5 is relatively small, so further increasing the number of 5 m high street trees in street canyons with densely distributed tall street trees will have only a little more negative impact on PM2.5 concentration in street canyons. The PM2.5 concentration in the street canyon is generally better when the street trees are 5 m long, even if the number of 5 m high street trees is relatively large. Although the crown size of 15 m high street trees is larger than that of 10 m street trees, the vertical distance between the canopy of 15 m high street trees and the ground is usually greater than that of 10 m high street trees. The distance between the canopy of 15 m high street trees and the breathing zone is usually greater than that of the 10 m street trees. Longer distances lead to a weakening of its impact on PM2.5. When the 15 m high and 10 m high street trees are more scattered in the street, their effects on the PM2.5 concentration at the height of the breathing zone (1.5 m) are generally similar. Full article
Show Figures

Figure 1

15 pages, 6057 KiB  
Technical Note
Present-Day Three-Dimensional Deformation across the Ordos Block, China, Derived from InSAR, GPS, and Leveling Observations
by Chuanjin Liu, Lingyun Ji, Liangyu Zhu, Caijun Xu, Wenting Zhang, Jiangtao Qiu and Guohua Xiong
Remote Sens. 2023, 15(11), 2890; https://doi.org/10.3390/rs15112890 - 1 Jun 2023
Cited by 9 | Viewed by 2438
Abstract
The Ordos Block in China experiences tectonic activity and frequent earthquakes due to compression from the Tibetan Plateau and extension from the North China Block. This has prompted the construction of a high-resolution three-dimensional (3D) deformation field to better understand the region’s crustal [...] Read more.
The Ordos Block in China experiences tectonic activity and frequent earthquakes due to compression from the Tibetan Plateau and extension from the North China Block. This has prompted the construction of a high-resolution three-dimensional (3D) deformation field to better understand the region’s crustal movement. Considering the limitations of the existing geodetic observations, we used InSAR, GPS, and leveling observations to create a high-precision 3D deformation field for the Ordos Block. Spherical wavelet decomposition was used to separate tectonic and non-tectonic deformation signals. Short-wavelength non-tectonic deformation fields revealed complex surface deformation patterns caused by groundwater, oil, gas extraction, and coal mining. Long-wavelength tectonic deformation fields showed subsidence in the southern margin of the block, while the interior and northeastern margins were uplifted. By combining imaging results from the seismic velocity structure and magnetotellurics, we infer that the upwelling of deep materials beneath the northeastern margin leads to surface uplift with tensile strain rates. The crustal uplift in the area south of 38°N matches the thickening of the lower crust. The weak subsidence and eastward horizontal movement disappearing near 108°E at the southern margin support the existence of asthenosphere flow beneath the Qinling orogenic belt. Full article
Show Figures

Graphical abstract

17 pages, 6286 KiB  
Article
Mineralization Regularities of the Bainiuchang Ag Polymetallic Deposit in Yunnan Province, China
by Fuju Jia, Ceting Yang, Guolong Zheng, Mingrong Xiang, Xuelong Liu, Wei Duan, Junshan Dao and Zhihong Su
Minerals 2023, 13(3), 418; https://doi.org/10.3390/min13030418 - 16 Mar 2023
Cited by 2 | Viewed by 1941
Abstract
The Bainiuchang Ag polymetallic deposit is located at the junction between the Cathaysia, Yangtze, China and Indosinian blocks. It has experienced many geological events, and records excellent conditions for multiple mineralization. In this paper, elemental correlation analysis, cluster analysis, factor analysis, a semivariogram [...] Read more.
The Bainiuchang Ag polymetallic deposit is located at the junction between the Cathaysia, Yangtze, China and Indosinian blocks. It has experienced many geological events, and records excellent conditions for multiple mineralization. In this paper, elemental correlation analysis, cluster analysis, factor analysis, a semivariogram of Zn/Pb values, mineralization distribution and trend surface analysis have been carried out based on the prospecting database and ore body model. Our results show that Ag–Pb–Zn were mineralized at moderate temperatures. Tin was mineralized at high temperatures, and Sn and Zn/Pb values are well correlated. The Zn/Pb values can be used for tracing the ore-forming fluid. The semivariogram revealed that the Zn/Pb values are moderately spatially dependent, with good mineralization continuity in the 100° and 10° directions. The spatial pattern of the elemental grade correlates with mineralization enrichment. The trend surface analysis shows that the Ag, Pb, Zn, and Cu mineralization is weak in the south and strong in the north of the deposit, and the Sn grades and Zn/Pb values are high in the south and low in the north. High-temperature Sn, medium-temperature Cu, and medium-temperature Ag–Pb–Zn mineralization have occurred in a south-to-north trend. Therefore, the source of the ore-forming fluid was in the southern part of the mining area. During the migration of the ore-forming fluid from south to north, different minerals were precipitated due to changes in the physicochemical environment. The spatial patterns of mineralization may provide a basis for studying the formation of the ore deposit, and can guide ore exploration and mining in the mine area and similar ore deposits elsewhere. Full article
Show Figures

Figure 1

21 pages, 7464 KiB  
Article
Slope Stability Analysis for a Large Hydropower Station in China
by Dongbin Yin, Huifen Liu, Jingwen Yan and Jianqiang Wang
Sustainability 2023, 15(4), 3561; https://doi.org/10.3390/su15043561 - 15 Feb 2023
Cited by 1 | Viewed by 2662
Abstract
Hydropower plants (including the switching station) built in the middle and southern section of the north–south zone of China are always situated in complex geological settings of transition zones from strong to weak earthquakes with active faults. It is of great importance to [...] Read more.
Hydropower plants (including the switching station) built in the middle and southern section of the north–south zone of China are always situated in complex geological settings of transition zones from strong to weak earthquakes with active faults. It is of great importance to carry out careful evaluation of the slope stability considering various loading scenarios to ensure safe operation of the power stations. By using the rigid body limit equilibrium method and the finite element method, the effects of long-term load and seismic load on slope stability for a large hydropower station were studied. The results show that the slope safety factors of the station meet the stability requirements when the slope is under long-term load and under the action of the Wenchuan and Lushan earthquake loads. The stability of the slope is guaranteed. However, the risk analysis of the slope stability under the action of the design earthquake load shows that the slope safety factor is less than the accidental working condition safety factor of 1.05. Under the action of a strong earthquake, the crumbling block gravel soil layer in the shallow natural slope slides and destabilizes, which is obviously beyond its protection capacity, and therefore, effective seismic defense measures should be developed to ensure the safety of the personnel and equipment operating in the power station and switching station. Full article
(This article belongs to the Special Issue Slope Stability Analysis and Landslide Disaster Prevention)
Show Figures

Figure 1

18 pages, 11890 KiB  
Article
CBM Gas Content Prediction Model Based on the Ensemble Tree Algorithm with Bayesian Hyper-Parameter Optimization Method: A Case Study of Zhengzhuang Block, Southern Qinshui Basin, North China
by Chao Yang, Feng Qiu, Fan Xiao, Siyu Chen and Yufeng Fang
Processes 2023, 11(2), 527; https://doi.org/10.3390/pr11020527 - 9 Feb 2023
Cited by 12 | Viewed by 2170
Abstract
Gas content is an important parameter for evaluating coalbed methane reservoirs, so it is an important prerequisite for coalbed methane resource evaluation and favorable area optimization to predict the gas content accurately. To improve the accuracy of CBM gas content prediction, the Bayesian [...] Read more.
Gas content is an important parameter for evaluating coalbed methane reservoirs, so it is an important prerequisite for coalbed methane resource evaluation and favorable area optimization to predict the gas content accurately. To improve the accuracy of CBM gas content prediction, the Bayesian hyper-parameter optimization method (BO) is introduced into the random forest algorithm (RF) and gradient boosting decision tree algorithm (GBDT) to establish CBM gas content prediction models using well-logging data in the Zhengzhuang block, south of Qinshui Basin, China. As a result, the GBDT model based on the BO method (BO-GBDT model) and the RF model based on the BO method (BO-RF model) were proposed. The results show that the mean-square-error (MSE) of the BO-RF model and the BO-GBDT model can be reduced by 8.83% and 37.94% on average less than that of the RF and GBDT modes, indicating that the accuracy of the models optimized by the BO method is improved. The prediction effect of the BO-GBDT model is better than that of the BO-RF model, especially in low gas content wells, and the R-squared (RSQ) of the BO-GBDT model and the BO-RF model is 0.82 and 0.66. The accuracy order of different models was BO-GBDT > GBDT > BO-RF > RF. Compared with other models, the gas content curve predicted by the BO-GBDT model has the best fitness with the measured gas content. The rule of gas distribution predicted by all four models is consistent with the measured gas content distribution. Full article
Show Figures

Figure 1

27 pages, 6766 KiB  
Article
Detrital Zircon Geochronology and Tectonic Evolution Implication of the Middle Jurassic Zhiluo Formation, Southern Ordos Basin, China
by Liwei Cui, Nan Peng, Yongqing Liu, Dawei Qiao and Yanxue Liu
Minerals 2023, 13(1), 45; https://doi.org/10.3390/min13010045 - 27 Dec 2022
Cited by 5 | Viewed by 3299
Abstract
The Ordos Basin’s southern part is a composite zone made up of numerous continental blocks and has long been influenced by surrounding tectonism. However, only a few studies have investigated the existence of southern provenance supply and the basin’s southern boundary in the [...] Read more.
The Ordos Basin’s southern part is a composite zone made up of numerous continental blocks and has long been influenced by surrounding tectonism. However, only a few studies have investigated the existence of southern provenance supply and the basin’s southern boundary in the Middle Jurassic Zhiluo Formation. Based on sandstone detrital zircon U-Pb dating and zircon rare earth element analyses, net-sand ratio maps, paleocurrent direction and the field outcrop survey, this study establishes the source area and boundary of the Zhiluo Formation in the southern basin, and discusses the tectonic events. The study shows that the four main age peaks in the detrital spectra occurs at 2283 Ma, 1788 Ma, 432.5 Ma and 218.7 Ma, with a few of the zircons dated at 794.5–1235.2 Ma. The North Qilian orogenic belt (N-QLOB), the western part of the North Qinling orogenic belt (NQOB), and the southern margin of the North China Block (SNCB) contributed to the provenance. According to an integrated analysis of the provenance and tectonic background of continental blocks in the basin’s southern margin, the boundary of the basin in the depositional period of the Zhiluo Formation should reach the N-QLOB in the southwest, the NQOB in the south, and the Sanmenxia–Lushan fault belt in the southeast. On the basis of the aforementioned findings, the tectonic evolution of the continental blocks at the southern periphery of the Ordos Basin was restored. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

Back to TopTop