Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = sorbitol non-fermenting Shiga toxin-producing Escherichia coli

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 628 KB  
Article
Prevalence and Virulent Gene Profiles of Sorbitol Non-Fermenting Shiga Toxin-Producing Escherichia coli Isolated from Goats in Southern Thailand
by Ratchakul Wiriyaprom, Ruttayaporn Ngasaman, Domechai Kaewnoi and Sakaoporn Prachantasena
Trop. Med. Infect. Dis. 2022, 7(11), 357; https://doi.org/10.3390/tropicalmed7110357 - 7 Nov 2022
Cited by 6 | Viewed by 1997
Abstract
Shiga toxin-producing Escherichia coli (STEC) is the pathogenic E. coli causing disease in humans via the consumption or handling of animal food products. The high prevalence of these organisms in ruminants has been widely reported. Among STECs, O157 is one of the most [...] Read more.
Shiga toxin-producing Escherichia coli (STEC) is the pathogenic E. coli causing disease in humans via the consumption or handling of animal food products. The high prevalence of these organisms in ruminants has been widely reported. Among STECs, O157 is one of the most lethal serotypes causing serious disease in humans. The present study investigated the prevalence of sorbitol non-fermenting STECs in goats reared in the lower region of southern Thailand and described the virulent factors carried by those isolates. Sorbitol non-fermenting (SNF)-STECs were found in 57 out of 646 goats (8.82%; 95% CI 6.75% to 11.28%). Molecular identification revealed that 0.77% of SNF-STEC isolates were the O157 serotype. Shiga toxin genes (stx1 and stx2) and other virulent genes (i.e., eaeA, ehxA, and saa) were detected by molecular techniques. The presence of stx1 (75.44%) was significantly higher than that of stx2 (22.81%), whereas 1.75% of the total isolates carried both stx1 and stx2. Most of the isolates carried ehxA for 75.44%, followed by saa (42.11%) and eaeA (12.28%). In addition, 21.05% of STEC isolates did not carry any eaeA, ehxA, or saa. The first investigation on SNF-STECs in goat was conducted in the lower region of southern Thailand. The present study revealed that goats could be one of the potential carriers of SNF-STECs in the observing area. Full article
(This article belongs to the Section Infectious Diseases)
Show Figures

Figure 1

16 pages, 1714 KB  
Article
Diversity of Non-O157 Shiga Toxin-Producing Escherichia coli Isolated from Cattle from Central and Southern Chile
by Leonela Díaz, Sebastian Gutierrez, Andrea I Moreno-Switt, Luis Pablo Hervé, Christopher Hamilton-West, Nora Lía Padola, Paola Navarrete, Angélica Reyes-Jara, Jianghong Meng, Narjol González-Escalona and Magaly Toro
Animals 2021, 11(8), 2388; https://doi.org/10.3390/ani11082388 - 13 Aug 2021
Cited by 6 | Viewed by 4523
Abstract
Cattle are the main reservoir of Shiga toxin-producing Escherichia coli (STEC), one of the world’s most important foodborne pathogens. The pathogen causes severe human diseases and outbreaks. This study aimed to identify and characterize non-O157 STEC isolated from cattle feces from central and [...] Read more.
Cattle are the main reservoir of Shiga toxin-producing Escherichia coli (STEC), one of the world’s most important foodborne pathogens. The pathogen causes severe human diseases and outbreaks. This study aimed to identify and characterize non-O157 STEC isolated from cattle feces from central and southern Chile. We analyzed 446 cattle fecal samples and isolated non-O157 STEC from 12.6% (56/446); a total of 93 different isolates were recovered. Most isolates displayed β-glucuronidase activity (96.8%; 90/93) and fermented sorbitol (86.0%; 80/93), whereas only 39.8% (37/93) were resistant to tellurite. A subgroup of 30 representative non-O157 STEC isolates was selected for whole-genome sequencing and bioinformatics analysis. In silico analysis showed that they grouped into 16 different sequence types and 17 serotypes; the serotypes most frequently identified were O116:H21 and O168:H8 (13% each). A single isolate of serotype O26:H11 was recovered. One isolate was resistant to tetracycline and carried resistance genes tet(A) and tet(R); no other isolate displayed antimicrobial resistance or carried antimicrobial resistance genes. The intimin gene (eae) was identified in 13.3% (4/30) of the genomes and 90% (27/30) carried the stx2 gene. A phylogenetic reconstruction demonstrated that the isolates clustered based on serotypes, independent of geographical origin. These results indicate that cattle in Chile carry a wide diversity of STEC potentially pathogenic for humans based on the presence of critical virulence genes. Full article
(This article belongs to the Special Issue The Impact of Emerging Hazards in Animal Production)
Show Figures

Figure 1

Back to TopTop