Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = somatosensory integration (SMI)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3011 KiB  
Article
Effect of Neck Muscle Fatigue on Hand Muscle Motor Performance and Early Somatosensory Evoked Potentials
by Mahboobeh Zabihhosseinian, Paul Yielder, Rufeyda Wise, Michael Holmes and Bernadette Murphy
Brain Sci. 2021, 11(11), 1481; https://doi.org/10.3390/brainsci11111481 - 9 Nov 2021
Cited by 6 | Viewed by 3115
Abstract
Even on pain free days, recurrent neck pain alters sensorimotor integration (SMI) measured via somatosensory evoked potentials (SEPs). Neck muscle fatigue decreases upper limb proprioception, and thus may interfere with upper limb motor task acquisition and SMI. This study aimed to determine the [...] Read more.
Even on pain free days, recurrent neck pain alters sensorimotor integration (SMI) measured via somatosensory evoked potentials (SEPs). Neck muscle fatigue decreases upper limb proprioception, and thus may interfere with upper limb motor task acquisition and SMI. This study aimed to determine the effect of cervical extensor muscle (CEM) fatigue on upper limb motor acquisition and retention; and SMI, measured via early SEPs. Twenty-four healthy right-handed individuals were randomly assigned to control or CEM fatigue. Baseline SEPs were elicited via median nerve stimulation at the wrist. Participants then lay prone on a padded table. The fatigue group supported a 2 kg weight until they could no longer maintain the position. The control group rested their neck in neutral for 5 min. Participants completed pre- and post-motor skill acquisition while seated, SEPs were again collected. Task retention was measured 24 h later. Accuracy improved post acquisition and at retention for both groups (p < 0.001), with controls outperforming the fatigue group (p < 0.05). The fatigue group had significantly greater increases in the N24 (p = 0.017) and N30 (p = 0.007) SEP peaks. CEM fatigue impaired upper limb motor learning outcomes in conjunction with differential changes in SEP peak amplitudes related to SMI. Full article
Show Figures

Figure 1

14 pages, 2672 KiB  
Article
Differential Changes in Early Somatosensory Evoked Potentials between the Dominant and Non-Dominant Hand, Following a Novel Motor Tracing Task
by Mahboobeh Zabihhosseinian, Ryan Gilley, Danielle Andrew, Bernadette Murphy and Paul Yielder
Brain Sci. 2020, 10(5), 290; https://doi.org/10.3390/brainsci10050290 - 14 May 2020
Cited by 3 | Viewed by 3638
Abstract
During training in a novel dynamic environment, the non-dominant upper limb favors feedback control, whereas the dominant limb favors feedforward mechanisms. Early somatosensory evoked potentials (SEPs) offer a means to explore differences in cortical regions involved in sensorimotor integration (SMI). This study sought [...] Read more.
During training in a novel dynamic environment, the non-dominant upper limb favors feedback control, whereas the dominant limb favors feedforward mechanisms. Early somatosensory evoked potentials (SEPs) offer a means to explore differences in cortical regions involved in sensorimotor integration (SMI). This study sought to compare differences in SMI between the right (Dom) and left (Non-Dom) hand in healthy right-handed participants. SEPs were recorded in response to median nerve stimulation, at baseline and post, a motor skill acquisition-tracing task. One group (n = 12) trained with their Dom hand and the other group (n = 12), with their Non-Dom hand. The Non-Dom hand was significantly more accurate at baseline (p < 0.0001) and both groups improved with time (p < 0.0001), for task accuracy, with no significant interaction effect between groups for both post-acquisition and retention. There were significant group interactions for the N24 (p < 0.001) and the N30 (p < 0.0001) SEP peaks. Post motor acquisition, the Dom hand had a 28.9% decrease in the N24 and a 23.8% increase in the N30, with opposite directional changes for the Non-Dom hand; 22.04% increase in N24 and 24% decrease in the N30. These SEP changes reveal differences in early SMI between Dom and Non-Dom hands in response to motor acquisition, providing objective, temporally sensitive measures of differences in neural mechanisms between the limbs. Full article
(This article belongs to the Special Issue Brain Plasticity and Motor Control—Series II)
Show Figures

Graphical abstract

17 pages, 2111 KiB  
Article
The Influence of Subclinical Neck Pain on Neurophysiological and Behavioral Measures of Multisensory Integration
by Antonia M. Karellas, Paul Yielder, James J. Burkitt, Heather S. McCracken and Bernadette A. Murphy
Brain Sci. 2019, 9(12), 362; https://doi.org/10.3390/brainsci9120362 - 9 Dec 2019
Cited by 7 | Viewed by 3616
Abstract
Multisensory integration (MSI) is necessary for the efficient execution of many everyday tasks. Alterations in sensorimotor integration (SMI) have been observed in individuals with subclinical neck pain (SCNP). Altered audiovisual MSI has previously been demonstrated in this population using performance measures, such as [...] Read more.
Multisensory integration (MSI) is necessary for the efficient execution of many everyday tasks. Alterations in sensorimotor integration (SMI) have been observed in individuals with subclinical neck pain (SCNP). Altered audiovisual MSI has previously been demonstrated in this population using performance measures, such as reaction time. However, neurophysiological techniques have not been combined with performance measures in the SCNP population to determine differences in neural processing that may contribute to these behavioral characteristics. Electroencephalography (EEG) event-related potentials (ERPs) have been successfully used in recent MSI studies to show differences in neural processing between different clinical populations. This study combined behavioral and ERP measures to characterize MSI differences between healthy and SCNP groups. EEG was recorded as 24 participants performed 8 blocks of a simple reaction time (RT) MSI task, with each block consisting of 34 auditory (A), visual (V), and audiovisual (AV) trials. Participants responded to the stimuli by pressing a response key. Both groups responded fastest to the AV condition. The healthy group demonstrated significantly faster RTs for the AV and V conditions. There were significant group differences in neural activity from 100–140 ms post-stimulus onset, with the control group demonstrating greater MSI. Differences in brain activity and RT between individuals with SCNP and a control group indicate neurophysiological alterations in how individuals with SCNP process audiovisual stimuli. This suggests that SCNP alters MSI. This study presents novel EEG findings that demonstrate MSI differences in a group of individuals with SCNP. Full article
(This article belongs to the Collection Collection on Systems Neuroscience)
Show Figures

Figure 1

Back to TopTop