Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = solvent qualification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 9419 KiB  
Article
Simultaneous Extraction and Determination of Lignans from Schisandra chinensis (Turcz.) Baill. via Diol-Based Matrix Solid-Phase Dispersion with High-Performance Liquid Chromatography
by Yinpeng Wang, Jingbo Zhu, Xinxin Du and Yumei Li
Molecules 2023, 28(18), 6448; https://doi.org/10.3390/molecules28186448 - 5 Sep 2023
Cited by 5 | Viewed by 2237
Abstract
The quality of Schisandra chinensis (Turcz.) Baill. (S. chinensis) is principally attributed to lignan compounds. In this paper, a simple and rapid strategy for simultaneous extraction and determination of 10 lignans from S. chinensis was established through matrix solid-phase dispersion (MSPD) [...] Read more.
The quality of Schisandra chinensis (Turcz.) Baill. (S. chinensis) is principally attributed to lignan compounds. In this paper, a simple and rapid strategy for simultaneous extraction and determination of 10 lignans from S. chinensis was established through matrix solid-phase dispersion (MSPD) assisted by diol-functionalized silica (Diol). The experimental parameters for MSPD extraction were screened using the response surface methodology (RSM). Diol (800 mg) was used as a dispersant and methanol (MeOH, 85%, v/v) as an eluting solvent (10 mL), resulting in a high extraction efficiency. MSPD extraction facilitated the combination of extraction and purification in a single step, which was less time-consuming than and avoided the thermal treatment involved in traditional methods. The simultaneous qualification and quantification of 10 lignans was achieved by combining MSPD and high-performance liquid chromatography (HPLC). The proposed method offered good linearity and a low limit of detection starting from 0.04 (schisandrin C) to 0.43 μg/mL (schisantherin B) for lignans, and the relative standard deviation (RSD, %) values of precision were acceptable, with a maximum value of 1.15% (schisantherin B and schisanhenol). The methodology was successfully utilized to analyze 13 batches of S. chinensis from different cultivated areas of China, which proved its accuracy and practicability in the quantitative analysis of the quality control of S. chinensis. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

17 pages, 7684 KiB  
Article
Use of Polycaprolactone Electrospun Nanofiber Mesh in a Face Mask
by Morshed Khandaker, Helga Progri, Dhakshyane Tamil Arasu, Sadegh Nikfarjam and Nabila Shamim
Materials 2021, 14(15), 4272; https://doi.org/10.3390/ma14154272 - 30 Jul 2021
Cited by 32 | Viewed by 4130
Abstract
Electrospun nanofiber mesh has previously been used as an air filtration device. However, the qualification of polycaprolactone (PCL) nanofiber mesh cloth in face masks to protect individuals against airborne particles carrying microorganisms has yet to be investigated. The long-term goal of this study [...] Read more.
Electrospun nanofiber mesh has previously been used as an air filtration device. However, the qualification of polycaprolactone (PCL) nanofiber mesh cloth in face masks to protect individuals against airborne particles carrying microorganisms has yet to be investigated. The long-term goal of this study is to develop methods to use PCL nanofiber mesh to provide better protection against microorganisms. To achieve this goal, we observed the morphology, water droplet absorption, thermal (differential scanning calorimetry), mechanical, and airborne particle filtering capabilities, and also the microbial activities of a PCL cloth, to evaluate whether it is suitable to act as a filter in a face mask. We have produced a polycaprolactone (PCL) nanofiber cloth after electrospinning it onto a drum for 3 and 10 min, referred to hereafter as PCL-3 and PCL-10, respectively. Our study found that the middle protection layer (control) of the Henry Schein Earloop Procedure Mask contains pores (average diameter = 5.72 ± 0.62 µm) which are 48 times larger than the diameter of a microorganism an average diameter of ~120 nanometers. However, PCL-10 nanofiber membranes show pores with an average diameter of 1.42 ± 0.34 µm. Our contact angle measurement tests found that all the samples were very hydrophobic (contact angle values varied between 120 and 150 degrees). However, both PCL cloths’ contact angle values were lower compared to the control. The produced PCL cloths showed a lower water droplet absorption compared to the control. Thermal studies found that PCL is stable in extreme conditions and no plasticizing effect occurs due to the presence of a solvent. Mechanical tests showed that PCL-10 cloth had higher strength and modulus compared to the control and PCL-3 under tension loading conditions. A vacuum experiment found that the PCL-10 fiber cloth could withstand a negative pressure of 18 Psi without any signs of breakage, and the mask was able to capture airborne particles and microorganisms. The feasibility of immobilizing anti-bacterial nanoparticles with PCL during electrospinning creates the future potential of producing an anti-bacterial face mask using PCL. Full article
Show Figures

Figure 1

17 pages, 5044 KiB  
Article
Qualification of Non-Halogenated Organic Solvents Applied to Microsphere Manufacturing Process
by Hyunjin Shim and Hongkee Sah
Pharmaceutics 2020, 12(5), 425; https://doi.org/10.3390/pharmaceutics12050425 - 6 May 2020
Cited by 6 | Viewed by 3819
Abstract
As a non-halogenated dispersed solvent, ethyl acetate has been most commonly used for the manufacturing of poly-d,l-lactide-co-glycolide (PLGA) microspheres. However, ethyl acetate-based microencapsulation processes face several limitations. This study was aimed at proposing ethyl formate as an alternative. Evaluated [...] Read more.
As a non-halogenated dispersed solvent, ethyl acetate has been most commonly used for the manufacturing of poly-d,l-lactide-co-glycolide (PLGA) microspheres. However, ethyl acetate-based microencapsulation processes face several limitations. This study was aimed at proposing ethyl formate as an alternative. Evaluated in this study was the solvent qualification of ethyl formate and ethyl acetate for microencapsulation of a hydrophobic drug into PLGA microspheres. An oil-in-water emulsion solvent extraction technique was developed to load progesterone into PLGA microspheres. Briefly, right after emulsion droplets were temporarily stabilized, they were subject to primary solvent extraction. Appearing semisolid, embryonic microspheres were completely hardened through subsequent secondary solvent extraction. Changes in process parameters of the preparative technique made it possible to manipulate the properties of emulsion droplets, progesterone behavior, and microsphere quality. Despite the two solvents showing comparable Hansen solubility parameter distances toward PLGA, ethyl formate surpassed ethyl acetate in relation to volatility and water miscibility. These features served as advantages in the microsphere manufacturing process, helping produce PLGA microspheres with better quality in terms of drug crystallization, drug encapsulation efficiency, microsphere size homogeneity, and residual solvent content. The present ethyl formate-based preparative technique could be an attractive method of choice for the production of drug-loaded PLGA microspheres. Full article
(This article belongs to the Special Issue Emerging Micro- and Nanofabrication Technologies for Drug Delivery)
Show Figures

Graphical abstract

17 pages, 3487 KiB  
Article
Polyelectrolytes in Hot Melt Extrusion: A Combined Solvent-Based and Interacting Additive Technique for Solid Dispersions
by Felix Ditzinger, Catherine Dejoie, Dubravka Sisak Jung and Martin Kuentz
Pharmaceutics 2019, 11(4), 174; https://doi.org/10.3390/pharmaceutics11040174 - 10 Apr 2019
Cited by 5 | Viewed by 3877
Abstract
Solid dispersions are important supersaturating formulations to orally deliver poorly water-soluble drugs. A most important process technique is hot melt extrusion but process requirements limit the choice of suitable polymers. One way around this limitation is to synthesize new polymers. However, their disadvantage [...] Read more.
Solid dispersions are important supersaturating formulations to orally deliver poorly water-soluble drugs. A most important process technique is hot melt extrusion but process requirements limit the choice of suitable polymers. One way around this limitation is to synthesize new polymers. However, their disadvantage is that they require toxicological qualification and present regulatory hurdles for their market authorization. Therefore, this study follows an alternative approach, where new polymeric matrices are created by combining a known polymer, small molecular additives, and an initial solvent-based process step. The polyelectrolyte, carboxymethylcellulose sodium (NaCMC), was tested in combination with different additives such as amino acids, meglumine, trometamol, and urea. It was possible to obtain a new polyelectrolyte matrix that was viable for manufacturing by hot melt extrusion. The amount of additives had to be carefully tuned to obtain an amorphous polymer matrix. This was achieved by probing the matrix using several analytical techniques, such as Fourier transform infrared spectroscopy, differential scanning calorimetry, hot stage microscopy, and X-ray powder diffraction. Next, the obtained matrices had to be examined to ensure the homogeneous distribution of the components and the possible residual crystallinity. As this analysis requires probing a sample on several points and relies on high quality data, X-ray diffraction and starring techniques at a synchrotron source had to be used. Particularly promising with NaCMC was the addition of lysine as well as meglumine. Further research is needed to harness the novel matrix with drugs in amorphous formulations. Full article
(This article belongs to the Special Issue Recent Progress in Solid Dispersion Technology)
Show Figures

Graphical abstract

8 pages, 473 KiB  
Article
Development and Validation of an HPLC-PDA Method for Biologically Active Quinonemethide Triterpenoids Isolated from Maytenus chiapensis
by Vito Alessandro Taddeo, Ulises Guardado Castillo, Morena Lizette Martínez, Jenny Menjivar, Ignacio Antonio Jiménez, Marvin José Núñez and Isabel López Bazzocchi
Medicines 2019, 6(1), 36; https://doi.org/10.3390/medicines6010036 - 7 Mar 2019
Cited by 11 | Viewed by 4373
Abstract
Background: Quinonemethide triterpenoids, known as celastroloids, constitute a relatively small group of biologically active compounds restricted to the Celastraceae family and, therefore, they are chemotaxonomic markers for this family. Among this particular type of metabolite, pristimerin and tingenone are considered traditional medicines [...] Read more.
Background: Quinonemethide triterpenoids, known as celastroloids, constitute a relatively small group of biologically active compounds restricted to the Celastraceae family and, therefore, they are chemotaxonomic markers for this family. Among this particular type of metabolite, pristimerin and tingenone are considered traditional medicines in Latin America. The aim of this study was the isolation of the most abundant celastroloids from the root bark of Maytenus chiapensis, and thereafter, to develop an analytical method to identify pristimerin and tingenone in the Celastraceae species. Methods: Pristimerin and tingenone were isolated from the n-hexane-Et2O extract of the root bark of M. chiapensis through chromatographic techniques, and were used as internal standards. Application of a validated RP HPLC-PDA method was developed for the simultaneous quantification of these two metabolites in three different extracts, n-hexane-Et2O, methanol, and water, to determine the best extractor solvent. Results: Concentration values showed great variation between the solvents used for extraction, with the n-hexane–Et2O extract being the richest in pristimerin and tingenone. Conclusions: M. chiapensis is a source of two biologically active quinonemethide triterpenoids. An analytical method was developed for the qualification and quantification of these two celastroloids in the root bark extracts of M. chiapensis. The validated method reported herein could be extended and be useful in analyzing Celastraceae species and real commercial samples. Full article
(This article belongs to the Special Issue Biological Potential and Medical Use of Secondary Metabolites)
Show Figures

Figure 1

19 pages, 2608 KiB  
Article
Comparison of a Novel Miniaturized Screening Device with Büchi B290 Mini Spray-Dryer for the Development of Spray-Dried Solid Dispersions (SDSDs)
by Aymeric Ousset, Joke Meeus, Florent Robin, Martin Alexander Schubert, Pascal Somville and Kalliopi Dodou
Processes 2018, 6(8), 129; https://doi.org/10.3390/pr6080129 - 16 Aug 2018
Cited by 11 | Viewed by 7933
Abstract
Spray-drying is an increasingly popular technology for the production of amorphous solid dispersions (ASDs) in the pharmaceutical industry that is used in the early evaluation and industrial production of formulations. Efficient screening of ASD in the earliest phase of drug development is therefore [...] Read more.
Spray-drying is an increasingly popular technology for the production of amorphous solid dispersions (ASDs) in the pharmaceutical industry that is used in the early evaluation and industrial production of formulations. Efficient screening of ASD in the earliest phase of drug development is therefore critical. A novel miniaturized atomization equipment for screening spray-dried solid dispersions (SDSDs) in early formulation and process development was developed. An in-depth comparison between the equipment/process parameters and performance of our novel screening device and a laboratory Büchi B290 mini spray-dryer was performed. Equipment qualification was conducted by comparing the particle/powder attributes, i.e., miscibility/solid state, residual solvent, and morphological properties of binary SDSDs of itraconazole prepared at both screening and laboratory scales. The operating mode of the miniaturized device was able to reproduce similar process conditions/parameters (e.g., outlet temperature (Tout)) and to provide particles with similar drug–polymer miscibility and morphology as laboratory-scale SDSDs. These findings confirm that the design and operation of this novel screening equipment mimic the microscale evaporation mechanism of a larger spray-dryer. The miniaturized spray-dryer was therefore able to provide a rational prediction of adequate polymer and drug loading (DL) for SDSD development while reducing active pharmaceutical ingredient (API) consumption by a factor of 120 and cycle time by a factor of 4. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

Back to TopTop