Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = soil fungistasis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3872 KiB  
Article
Impact of Land Use Types on Soil Physico-Chemical Properties, Microbial Communities, and Their Fungistatic Effects
by Giuseppina Iacomino, Mohamed Idbella, Salvatore Gaglione, Ahmed M. Abd-ElGawad and Giuliano Bonanomi
Soil Syst. 2024, 8(4), 131; https://doi.org/10.3390/soilsystems8040131 - 16 Dec 2024
Viewed by 2846
Abstract
Soilborne plant pathogens significantly impact agroecosystem productivity, emphasizing the need for effective control methods to ensure sustainable agriculture. Soil fungistasis, the soil’s ability to inhibit fungal spore germination under optimal conditions, is pivotal for biological control. This study explores soil fungistasis variability across [...] Read more.
Soilborne plant pathogens significantly impact agroecosystem productivity, emphasizing the need for effective control methods to ensure sustainable agriculture. Soil fungistasis, the soil’s ability to inhibit fungal spore germination under optimal conditions, is pivotal for biological control. This study explores soil fungistasis variability across land-use intensities, spanning deciduous and evergreen forests, grasslands, shrublands, and horticultural cultivations in both open fields and greenhouses. Soil characterization encompassed organic matter, pH, total nitrogen, C/N ratio, key cations (Ca2+, Mg2+, K+, Na+), enzymatic activities, microbial biomass, and soil microbiota analyzed through high-throughput sequencing of 16s rRNA genes. Fungistasis was evaluated against the pathogenic fungi Botrytis cinerea and the beneficial microbe Trichoderma harzianum. Fungistasis exhibited similar trends across the two fungi. Specifically, the application of glucose to soil temporarily annulled soil fungistasis for both B. cinerea and T. harzianum. In fact, a substantial fungal growth, i.e., fungistasis relief, was observed immediately (48 h) after the pulse application with glucose. In all cases, the fungistasis relief was proportional to the glucose application rate, i.e., fungal growth was higher when the concentration of glucose was higher. However, the intensity of fungistasis relief largely varied across soil types. Our principal component analysis (PCA) demonstrated that the growth of both Trichoderma and Botrytis fungi was positively and significantly correlated with organic carbon content, total nitrogen, iron, magnesium, calcium, and sodium while negatively correlated with fluorescein diacetate (FDA) hydrolysis. Additionally, bacterial diversity and composition across different ecosystems exhibited a positive correlation with FDA hydrolysis and a negative correlation with phosphoric anhydride and soil pH. Analysis of bacterial microbiomes revealed significant differences along the land use intensity gradient, with higher fungistasis in soils dominated by Pseudoarthrobacter. Soils under intensive horticultural cultivation exhibited a prevalence of Acidobacteria and Cyanobacteria, along with reduced fungistasis. This study sheds light on soil fungistasis variability in diverse ecosystems, underscoring the roles of soil texture rather than soil organic matter and microbial biomass to explain the variability of fungistasis across landscapes. Full article
Show Figures

Figure 1

17 pages, 1537 KiB  
Article
Links between Soil Bacteriobiomes and Fungistasis toward Fungi Infecting the Colorado Potato Beetle
by Ekaterina Chertkova, Marsel R. Kabilov, Olga Yaroslavtseva, Olga Polenogova, Elena Kosman, Darya Sidorenko, Tatyana Alikina, Yury Noskov, Anton Krivopalov, Viktor V. Glupov and Vadim Yu. Kryukov
Microorganisms 2023, 11(4), 943; https://doi.org/10.3390/microorganisms11040943 - 4 Apr 2023
Cited by 4 | Viewed by 2000
Abstract
Entomopathogenic fungi can be inhibited by different soil microorganisms, but the effect of a soil microbiota on fungal growth, survival, and infectivity toward insects is insufficiently understood. We investigated the level of fungistasis toward Metarhizium robertsii and Beauveria bassiana in soils of conventional [...] Read more.
Entomopathogenic fungi can be inhibited by different soil microorganisms, but the effect of a soil microbiota on fungal growth, survival, and infectivity toward insects is insufficiently understood. We investigated the level of fungistasis toward Metarhizium robertsii and Beauveria bassiana in soils of conventional potato fields and kitchen potato gardens. Agar diffusion methods, 16S rDNA metabarcoding, bacterial DNA quantification, and assays of Leptinotarsa decemlineata survival in soils inoculated with fungal conidia were used. Soils of kitchen gardens showed stronger fungistasis toward M. robertsii and B. bassiana and at the same time the highest density of the fungi compared to soils of conventional fields. The fungistasis level depended on the quantity of bacterial DNA and relative abundance of Bacillus, Streptomyces, and some Proteobacteria, whose abundance levels were the highest in kitchen garden soils. Cultivable isolates of bacilli exhibited antagonism to both fungi in vitro. Assays involving inoculation of nonsterile soils with B. bassiana conidia showed trends toward elevated mortality of L. decemlineata in highly fungistatic soils compared to low-fungistasis ones. Introduction of antagonistic bacilli into sterile soil did not significantly change infectivity of B. bassiana toward the insect. The results support the idea that entomopathogenic fungi can infect insects within a hypogean habitat despite high abundance and diversity of soil antagonistic bacteria. Full article
Show Figures

Figure 1

15 pages, 2007 KiB  
Article
Soil Fungistasis against Fusarium Graminearum under Different tillage Systems
by Skaidrė Supronienė, Gražina Kadžienė, Arman Shamshitov, Agnė Veršulienė, Donatas Šneideris, Algirdas Ivanauskas and Renata Žvirdauskienė
Plants 2023, 12(4), 966; https://doi.org/10.3390/plants12040966 - 20 Feb 2023
Cited by 4 | Viewed by 2435
Abstract
The establishment of the harmful pathogen Fusarium graminearum in different agroecosystems may strongly depend on the ability of the soils to suppress its development and survival. This study aimed to evaluate the influence of different soil tillage systems (i.e., conventional tillage, reduced tillage [...] Read more.
The establishment of the harmful pathogen Fusarium graminearum in different agroecosystems may strongly depend on the ability of the soils to suppress its development and survival. This study aimed to evaluate the influence of different soil tillage systems (i.e., conventional tillage, reduced tillage and no-tillage) on soil fungistasis against F. graminearum. Soil samples were collected three times during the plant growing season in 2016 and 2017 from a long-term, 20-year soil tillage experiment. The F. graminearum in the soil samples was quantified by real-time qPCR. The soil fungistasis was evaluated by the reduction in the radial growth of F. graminearum in an in vitro assay. The antagonistic activity of the soil bacteria was tested using the dual culture method. The F. graminearum DNA contents in the soils were negatively correlated with soil fungistasis (r = –0.649 *). F. graminearum growth on the unfumigated soil was reduced by 70–87% compared to the chloroform fumigated soil. After the plant vegetation renewal, the soil fungistasis intensity was higher in the conventionally tilled fields than in the no-tillage. However, no significant differences were obtained among the tillage treatments at the mid-plant growth stage and after harvesting. 23 out of 104 bacteria isolated from the soil had a moderate effect, and only 1 had a strong inhibitory effect on the growth of F. graminearum. This bacterium was assigned 100% similarity to the Bacillus amyloliquefaciens Hy7 strain (gene bank no: JN382250) according to the sequence of the 16S ribosome subunit coding gene. The results of our study suggest that the presence of F. graminearum in soil is suppressed by soil fungistasis; however, the role of tillage is influenced by other factors, such as soil biological activity, type and quantity of plant residues and environmental conditions. Full article
(This article belongs to the Collection Feature Papers in Plant Protection)
Show Figures

Figure 1

10 pages, 2208 KiB  
Article
Survival Dynamics of Trichoderma longibrachiatum Tr58 in Conidia- and Chlamydospore-Amended Soils with Different Moisture Levels
by Qiulin Cao, Yao Liang, Ying Tian, Hua Lian, Xiliang Jiang and Mei Li
Agriculture 2023, 13(2), 238; https://doi.org/10.3390/agriculture13020238 - 19 Jan 2023
Cited by 9 | Viewed by 2926
Abstract
Two types of Trichoderma longibrachiatum Tr58 propagules, conidia and chlamydospores, were added to soils with different moisture levels. The survival dynamics of Tr58 in soils were determined. There are positive linear relationships between soil moisture levels and germination rates of the two propagules. [...] Read more.
Two types of Trichoderma longibrachiatum Tr58 propagules, conidia and chlamydospores, were added to soils with different moisture levels. The survival dynamics of Tr58 in soils were determined. There are positive linear relationships between soil moisture levels and germination rates of the two propagules. In natural non-sterilized soil, the germination of more than 95% conidia and 60% chlamydospores was inhibited, while a high soil moisture content and sterilization were beneficial to spore germination. The inhibitory effect of soil with 80% moisture content on the germination of chlamydospores was almost completely eliminated after sterilization. Twelve months after the conidia inoculated to the natural soil, the Tr58 propagules decreased continuously, which was hastened in soils with lower moisture content and almost near zero 24 months later, in all soils. In chlamydospore-amended soils, the Tr58 propagules generally showed a dynamic process of decreasing in the first month, increasing in the 2nd month, and then decreasing gradually. The average Tr58 content in chlamydospore-amended soils with 5, 10, 20, 40, and 80% moisture content was 19.2 times that of conidia-amended soils at 12 months. At 24 months, the Tr58 content was about 2.2% of the initial Tr58 content and 114 times that of conidia in soils with 20% moisture content. However, for 80% moisture content, the Tr58 content in soil was 0.0038% of the initial content of Tr58. According to the results of this study, 10–20% soil moisture content was the most favorable for the long-term survival of Tr58, and the survival ability of chlamydospores was stronger than that of conidia and had greater application potential in disease control. Full article
(This article belongs to the Special Issue Integrated Management of Soil-Borne Diseases)
Show Figures

Figure 1

16 pages, 2671 KiB  
Article
Resporulation of Calcium Alginate Encapsulated Metarhizium anisopliae on Metham®-Fumigated Soil and Infectivity on Larvae of Tenebrio molitor
by Sudhan Shah, Gavin J. Ash and Bree A. L. Wilson
J. Fungi 2022, 8(10), 1114; https://doi.org/10.3390/jof8101114 - 21 Oct 2022
Cited by 6 | Viewed by 3275
Abstract
Metarhizium anisopliae infects and kills a large range of insects and is a promising biocontrol agent to manage soil insects, such as wireworm in sweetpotato. The presence of other soil microbes, which exhibit competitive fungistasis, may inhibit the establishment of M. anisopliae in [...] Read more.
Metarhizium anisopliae infects and kills a large range of insects and is a promising biocontrol agent to manage soil insects, such as wireworm in sweetpotato. The presence of other soil microbes, which exhibit competitive fungistasis, may inhibit the establishment of M. anisopliae in soil. Microbially depleted soil, for example, sterilized soil, has been shown to improve the resporulation of the fungus from nutrient-fortified M. anisopliae. Prior to planting, sweetpotato plant beds can be disinfected with fumigants, such as Metham®, to control soil-borne pests and weeds. Metham® is a broad-spectrum soil microbial suppressant; however, its effect on Metarhizium spp. is unclear. In the research presented here, fungal resporulation was examined in Metham®-fumigated soil and the infectivity of the resulting granule sporulation was evaluated on mealworm, as a proxy for wireworm. The fungal granules grown on different soil treatments (fumigated, field and pasteurized soil) resporulated profusely (for example, 4.14 × 107 (±2.17 × 106) conidia per granule on fumigated soil), but the resporulation was not significantly different among the three soil treatments. However, the conidial germination of the resporulated granules on fumigated soil was >80%, which was significantly higher than those on pasteurized soil or field soil. The resporulated fungal granules were highly infective, causing 100% insect mortality 9 days after the inoculation, regardless of soil treatments. The results from this research show that the fungal granules applied to soils could be an infective inoculant in sweetpotato fields in conjunction with soil fumigation. Additional field studies are required to validate these results and to demonstrate integration with current farming practices. Full article
Show Figures

Figure 1

Back to TopTop