Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = smooth window (SW)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4410 KB  
Article
A New BDS-2 Satellite Clock Bias Prediction Algorithm with an Improved Exponential Smoothing Method
by Ye Yu, Mo Huang, Changyuan Wang, Rui Hu and Tao Duan
Appl. Sci. 2020, 10(21), 7456; https://doi.org/10.3390/app10217456 - 23 Oct 2020
Cited by 9 | Viewed by 2639
Abstract
High-accuracy and dependable prediction of the bias of space-borne atomic clocks is extremely crucial for the normal operation of the satellites in the case of interrupted communication. Currently, the clock bias prediction for the Chinese BeiDou Navigation Satellite System (BDS) remains still a [...] Read more.
High-accuracy and dependable prediction of the bias of space-borne atomic clocks is extremely crucial for the normal operation of the satellites in the case of interrupted communication. Currently, the clock bias prediction for the Chinese BeiDou Navigation Satellite System (BDS) remains still a huge challenge. To develop a high-precision approach for forecasting satellite clock bias (SCB) in allusion to analyze the shortcomings of the exponential smoothing (ES) model, a modified ES model is proposed hereof, especially for BDS-2 satellites. Firstly, the basic ES models and their prediction mechanism are introduced. As the smoothing coefficient is difficult to determine, this leads to increasing fitting errors and poor forecast results. This issue is addressed by introducing a dynamic “thick near thin far (TNTF)” principle based on the sliding windows (SW) to optimize the best smoothing coefficient. Furthermore, to enhance the short-term forecasted accuracy of the ES model, the gray model (GM) is adopted to learn the fitting residuals of the ES model and combine the forecasted results of the ES model with the predicted results of the GM model from error learning (ES + GM). Compared with the single ES models, the experimental results show that the short-term forecast based on the ES + GM models is improved remarkably, especially for the combination of the three ES model and GM model (ES3 + GM). To further improve the medium-term prediction accuracy of the ES model, the new algorithms in ES with GM error learning based on the SW (ES + GM + SW) are presented. Through examples analysis, compared with the single ES2 (ES3) model, results indicate that (1) the average forecast precision of the new algorithms ES2 + GM + SW (ES3 + GM + SW) can be dramatically enhanced by 49.10% (56.40%) from 5.56 ns (6.77 ns) to 2.83 ns (2.95 ns); (2) the average forecast stability of the new algorithms ES2 + GM + SW (ES3 + GM + SW) is also observably boosted by 53.40% (49.60%) from 8.99 ns (16.13 ns) to 4.19 ns (8.13 ns). These new coupling forecast models proposed in this contribution are more effective in clock bias prediction both forecast accuracy and forecast stability. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

17 pages, 7072 KB  
Article
Individual Tree Detection from Unmanned Aerial Vehicle (UAV) Derived Canopy Height Model in an Open Canopy Mixed Conifer Forest
by Midhun Mohan, Carlos Alberto Silva, Carine Klauberg, Prahlad Jat, Glenn Catts, Adrián Cardil, Andrew Thomas Hudak and Mahendra Dia
Forests 2017, 8(9), 340; https://doi.org/10.3390/f8090340 - 11 Sep 2017
Cited by 354 | Viewed by 27910
Abstract
Advances in Unmanned Aerial Vehicle (UAV) technology and data processing capabilities have made it feasible to obtain high-resolution imagery and three dimensional (3D) data which can be used for forest monitoring and assessing tree attributes. This study evaluates the applicability of low consumer [...] Read more.
Advances in Unmanned Aerial Vehicle (UAV) technology and data processing capabilities have made it feasible to obtain high-resolution imagery and three dimensional (3D) data which can be used for forest monitoring and assessing tree attributes. This study evaluates the applicability of low consumer grade cameras attached to UAVs and structure-from-motion (SfM) algorithm for automatic individual tree detection (ITD) using a local-maxima based algorithm on UAV-derived Canopy Height Models (CHMs). This study was conducted in a private forest at Cache Creek located east of Jackson city, Wyoming. Based on the UAV-imagery, we allocated 30 field plots of 20 m × 20 m. For each plot, the number of trees was counted manually using the UAV-derived orthomosaic for reference. A total of 367 reference trees were counted as part of this study and the algorithm detected 312 trees resulting in an accuracy higher than 85% (F-score of 0.86). Overall, the algorithm missed 55 trees (omission errors), and falsely detected 46 trees (commission errors) resulting in a total count of 358 trees. We further determined the impact of fixed tree window sizes (FWS) and fixed smoothing window sizes (SWS) on the ITD accuracy, and detected an inverse relationship between tree density and FWS. From our results, it can be concluded that ITD can be performed with an acceptable accuracy (F > 0.80) from UAV-derived CHMs in an open canopy forest, and has the potential to supplement future research directed towards estimation of above ground biomass and stem volume from UAV-imagery. Full article
Show Figures

Graphical abstract

16 pages, 2225 KB  
Article
A Novel Technique for Fetal ECG Extraction Using Single-Channel Abdominal Recording
by Nannan Zhang, Jinyong Zhang, Hui Li, Omisore Olatunji Mumini, Oluwarotimi Williams Samuel, Kamen Ivanov and Lei Wang
Sensors 2017, 17(3), 457; https://doi.org/10.3390/s17030457 - 24 Feb 2017
Cited by 59 | Viewed by 8295
Abstract
Non-invasive fetal electrocardiograms (FECGs) are an alternative method to standard means of fetal monitoring which permit long-term continual monitoring. However, in abdominal recording, the FECG amplitude is weak in the temporal domain and overlaps with the maternal electrocardiogram (MECG) in the spectral domain. [...] Read more.
Non-invasive fetal electrocardiograms (FECGs) are an alternative method to standard means of fetal monitoring which permit long-term continual monitoring. However, in abdominal recording, the FECG amplitude is weak in the temporal domain and overlaps with the maternal electrocardiogram (MECG) in the spectral domain. Research in the area of non-invasive separations of FECG from abdominal electrocardiograms (AECGs) is in its infancy and several studies are currently focusing on this area. An adaptive noise canceller (ANC) is commonly used for cancelling interference in cases where the reference signal only correlates with an interference signal, and not with a signal of interest. However, results from some existing studies suggest that propagation of electrocardiogram (ECG) signals from the maternal heart to the abdomen is nonlinear, hence the adaptive filter approach may fail if the thoracic and abdominal MECG lack strict waveform similarity. In this study, singular value decomposition (SVD) and smooth window (SW) techniques are combined to build a reference signal in an ANC. This is to avoid the limitation that thoracic MECGs recorded separately must be similar to abdominal MECGs in waveform. Validation of the proposed method with r01 and r07 signals from a public dataset, and a self-recorded private dataset showed that the proposed method achieved F1 scores of 99.61%, 99.28% and 98.58%, respectively for the detection of fetal QRS. Compared with four other single-channel methods, the proposed method also achieved higher accuracy values of 99.22%, 98.57% and 97.21%, respectively. The findings from this study suggest that the proposed method could potentially aid accurate extraction of FECG from MECG recordings in both clinical and commercial applications. Full article
(This article belongs to the Special Issue Wearable Biomedical Sensors)
Show Figures

Figure 1

11 pages, 1984 KB  
Article
Leaf Chlorophyll Content Estimation of Winter Wheat Based on Visible and Near-Infrared Sensors
by Jianfeng Zhang, Wenting Han, Lvwen Huang, Zhiyong Zhang, Yimian Ma and Yamin Hu
Sensors 2016, 16(4), 437; https://doi.org/10.3390/s16040437 - 25 Mar 2016
Cited by 44 | Viewed by 9478
Abstract
The leaf chlorophyll content is one of the most important factors for the growth of winter wheat. Visual and near-infrared sensors are a quick and non-destructive testing technology for the estimation of crop leaf chlorophyll content. In this paper, a new approach is [...] Read more.
The leaf chlorophyll content is one of the most important factors for the growth of winter wheat. Visual and near-infrared sensors are a quick and non-destructive testing technology for the estimation of crop leaf chlorophyll content. In this paper, a new approach is developed for leaf chlorophyll content estimation of winter wheat based on visible and near-infrared sensors. First, the sliding window smoothing (SWS) was integrated with the multiplicative scatter correction (MSC) or the standard normal variable transformation (SNV) to preprocess the reflectance spectra images of wheat leaves. Then, a model for the relationship between the leaf relative chlorophyll content and the reflectance spectra was developed using the partial least squares (PLS) and the back propagation neural network. A total of 300 samples from areas surrounding Yangling, China, were used for the experimental studies. The samples of visible and near-infrared spectroscopy at the wavelength of 450,900 nm were preprocessed using SWS, MSC and SNV. The experimental results indicate that the preprocessing using SWS and SNV and then modeling using PLS can achieve the most accurate estimation, with the correlation coefficient at 0.8492 and the root mean square error at 1.7216. Thus, the proposed approach can be widely used for winter wheat chlorophyll content analysis. Full article
(This article belongs to the Special Issue Sensors for Agriculture)
Show Figures

Figure 1

Back to TopTop