Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = slip deficit rate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 14259 KiB  
Article
Study of the Interseismic Deformation and Locking Depth along the Xidatan–Dongdatan Segment of the East Kunlun Fault Zone, Northeast Qinghai–Tibet Plateau, Based on Sentinel-1 Interferometry
by Shuai Kang, Lingyun Ji, Liangyu Zhu, Chuanjin Liu, Wenting Zhang, Ning Li, Jing Xu and Fengyun Jiang
Remote Sens. 2023, 15(19), 4666; https://doi.org/10.3390/rs15194666 - 23 Sep 2023
Cited by 4 | Viewed by 1888
Abstract
The East Kunlun fault zone (EKFZ), located northeast of the Qinghai–Tibet Plateau, has experienced several strong earthquakes of magnitude seven or above since 1900. It is one of the most active fault systems and is characterized by left-lateral strike-slip. However, the Xidatan–Dongdatan segment [...] Read more.
The East Kunlun fault zone (EKFZ), located northeast of the Qinghai–Tibet Plateau, has experienced several strong earthquakes of magnitude seven or above since 1900. It is one of the most active fault systems and is characterized by left-lateral strike-slip. However, the Xidatan–Dongdatan segment (XDS) of the East Kunlun fault zone (EKFZ) has had no earthquakes for many years, and the Kunlun Mountains MS 8.1 earthquake has a stress loading effect on this segment, so it is widely regarded as a high-risk earthquake gap. To this end, we collected the Sentinel-1 data of the XDS of the EKFZ from July 2014 to July 2019 and obtained the high-precision interseismic deformation field by the Interferometric Synthetic Aperture Radar (InSAR) technique to obtain the slip rate and locking depth of the XDS of the EKFZ, and the seismic potential of the segment was analyzed. The results are as follows: (1) The LOS deformation field of the XDS of the EKFZ was obtained using Sentinel-1 data of ascending and descending orbits, which indicated that the XDS of the EKFZ is dominated by horizontal motion. Combined with the interference results, it is shown that the strike-slip rate dominates the deformation information of the XDS of the EKFZ. The deep strike-slip rate of the fault is about 6 mm/yr, the deep dip-slip rate is about 2 mm/yr, and the slip-deficit rate on the fault surface is about 6 mm/yr; (2) Combined with the spiral dislocation theory model, the slip rate of the XDS to Xiugou Basin of the EKFZ has a gradually increasing trend, with an average slip rate of 9.6 ± 2.3 mm/yr and a locking depth of 29 ± 5 m; (3) The stress accumulation is about 483 ± 92 years in the XDS of the EKFZ, indicating that the cumulative elastic strain energy of the XDS can produce an MW 7.29 ± 0.1 earthquake in the future. Full article
Show Figures

Figure 1

18 pages, 4427 KiB  
Article
Characteristics of Regional GPS Crustal Deformation before the 2021 Yunnan Yangbi Ms 6.4 Earthquake and Its Implications for Determining Potential Areas of Future Strong Earthquakes
by Chenglong Dai, Weijun Gan, Zhangjun Li, Shiming Liang, Genru Xiao, Keliang Zhang and Ling Zhang
Remote Sens. 2023, 15(12), 3195; https://doi.org/10.3390/rs15123195 - 20 Jun 2023
Cited by 1 | Viewed by 1991
Abstract
The 2021 Yangbi Ms 6.4 earthquake in Yunnan, China, occurred in an area where the Global Positioning System (GPS) geodetic observations are particularly intensive. Based on a detailed retrospective analysis of the GPS observations of about 133 stations distributed in the proximately 400 [...] Read more.
The 2021 Yangbi Ms 6.4 earthquake in Yunnan, China, occurred in an area where the Global Positioning System (GPS) geodetic observations are particularly intensive. Based on a detailed retrospective analysis of the GPS observations of about 133 stations distributed in the proximately 400 km × 400 km region that contains the area affected by the earthquake., we obtain a high-resolution GPS velocity field and strain rate field and then derive the present-day slip rates of major faults in the region with the commonly used half-space elastic dislocation model and constraints from the GPS velocity field. Furthermore, by calculating the seismic moment accumulation and release and deficit rates in the main fault segments and combining with the distribution characteristics of small earthquakes, we evaluate the regional seismic risk. The results show that (1) there was a localized prominent strain accumulation rate around the seismogenic area of the impending Yangbi Ms 6.4 earthquake, although this was not the only area with a prominent strain rate in the whole region. (2) The seismogenic area of the earthquake was just located where the strain direction was deflected, which, together with the localized outstanding maximum shear strain and dilatation rates, provides us with important hints to determine the potential areas of future strong earthquakes. (3) Of all the seismogenic fault segments with relatively high potentials, judged using the elapsed time of historical earthquakes and effective strain accumulation rate, the middle section of the Weixi–Qiaohou fault has a higher earthquake risk than the southern section, the Midu–Binchuan section of the Chenghai fault has a higher risk than the Yongsheng section and the Jianchuan section of the Jianchuan–Qiaohou–Lijiang–Xiaojinhe fault has a higher risk than the Lijiang section. Full article
(This article belongs to the Special Issue Monitoring Subtle Ground Deformation of Geohazards from Space)
Show Figures

Figure 1

18 pages, 11112 KiB  
Article
A Crustal Deformation Pattern on the Northeastern Margin of the Tibetan Plateau Derived from GPS Observations
by Sihan Yu and Xiaoning Su
Remote Sens. 2023, 15(11), 2905; https://doi.org/10.3390/rs15112905 - 2 Jun 2023
Cited by 6 | Viewed by 1842
Abstract
The northeastern margin is a natural experimental field for studying crustal extrusion and expansion mechanisms. The accurate crustal deformation pattern is a key point in the analysis of regional deformation mechanisms and seismic hazard research and judgment. In this paper, the present-day GPS [...] Read more.
The northeastern margin is a natural experimental field for studying crustal extrusion and expansion mechanisms. The accurate crustal deformation pattern is a key point in the analysis of regional deformation mechanisms and seismic hazard research and judgment. In this paper, the present-day GPS velocity field on the northeastern margin of the Tibetan Plateau was obtained from encrypted GPS observations around the Haiyuan–Liupanshan fault zone, combined with GPS observations on the northeastern margin of the Tibetan Plateau from 2010 to 2020. Firstly, we divided the study area into three relatively independent blocks: the ORDOS block, Alxa block, and Lanzhou block; secondly, the accurate fault distribution of the Haiyuan–Liupanshan fault zone was taken into account to obtain the optimal inversion model; finally, using the block and fault back-slip dislocation model, the inversion obtained the slip rate distribution, locking depth, and slip deficit rate of each fault. The results indicate that the Laohushan Fault and Haiyuan Fault are dominated by the left-lateral strike-slip, while the Liupanshan Fault is dominated by the thrust dip-slip, and the Guguan–Baoji Fault has both left-lateral strike-slip and thrust dip-slip components. The maximum locking depths of the Laohushan Fault, Haiyuan Fault, Liupanshan Fault, and Guguan–Baoji Fault are 5 km, 13 km, 15 km, and 10 km, respectively, and the locking of the Haiyuan Fault is strong in the middle section and weak in the eastern and western section. The Haiyuan Fault is still in the post-earthquake stress adjustment stage. The slip deficit rate decays from 3.6 mm/yr to 1.8 mm/yr from west to east along the fault zone. Combined with geological and historical seismic data, the results suggest that the mid-long-term seismic risk in the Liupanshan Fault is high. Full article
(This article belongs to the Special Issue Monitoring Subtle Ground Deformation of Geohazards from Space)
Show Figures

Graphical abstract

19 pages, 5831 KiB  
Article
Interseismic Fault Coupling and Slip Rate Deficit on the Central and Southern Segments of the Tanlu Fault Zone Based on Anhui CORS Measurements
by Tingye Tao, Hao Chen, Shuiping Li, Xiaochuan Qu and Yongchao Zhu
Remote Sens. 2022, 14(5), 1093; https://doi.org/10.3390/rs14051093 - 23 Feb 2022
Cited by 4 | Viewed by 2813
Abstract
The Tanlu fault zone, extending over 2400 km from South China to Russia, is one of the most conspicuous tectonic elements in eastern Asia. In this study, we processed the Global Positioning System (GPS) measurements of Anhui Continuously Operating Reference System (AHCORS) between [...] Read more.
The Tanlu fault zone, extending over 2400 km from South China to Russia, is one of the most conspicuous tectonic elements in eastern Asia. In this study, we processed the Global Positioning System (GPS) measurements of Anhui Continuously Operating Reference System (AHCORS) between January 2013 and June 2018 to derive a high-precision velocity field in the central and southern segments of the Tanlu fault zone. We integrated the AHCORS data with those publicly available for geodetic imaging of the interseismic coupling and slip rate deficit distribution in the central and southern segments of the Tanlu fault zone. This work aims at a better understanding of strain accumulation and future seismic hazard in the Tanlu fault zone. The result indicates lateral variation of coupling distribution along the strike of the Tanlu fault zone. The northern segment of the Tanlu fault zone has a larger slip rate deficit and a deeper locking depth than the southern segment. Then, we analyzed three velocity profiles across the fault. The result suggests that the central and southern segments of the Tanlu fault zone are characterized by right-lateral strike-slip (0.29–0.44 mm/y) with compression components (0.35–0.76 mm/y). Finally, we estimated strain rates using the least-squares collocation method. The result shows that the dilatation rates concentrate in the region where the principal strain rates are very large. The interface of extension and compression is always accompanied by sudden change of direction of principal strain rates. Especially, in the north of Anhui, the dilatation rate is largest, reaching 3.780×108/a. Our study suggests that the seismic risk in the northern segment of the Tanlu fault zone remains very high for its strong strain accumulation and the lack of historical large earthquakes. Full article
(This article belongs to the Topic Natural Hazards and Disaster Risks Reduction)
Show Figures

Figure 1

20 pages, 20331 KiB  
Article
Interseismic Slip and Coupling along the Haiyuan Fault Zone Constrained by InSAR and GPS Measurements
by Xin Qiao, Chunyan Qu, Xinjian Shan, Dezheng Zhao and Lian Liu
Remote Sens. 2021, 13(16), 3333; https://doi.org/10.3390/rs13163333 - 23 Aug 2021
Cited by 12 | Viewed by 3638
Abstract
The Haiyuan fault zone is an important tectonic boundary and strong seismic activity belt in northeastern Tibet, but no major earthquake has occurred in the past ∼100 years, since the Haiyuan M8.5 event in 1920. The current state of strain accumulation and seismic [...] Read more.
The Haiyuan fault zone is an important tectonic boundary and strong seismic activity belt in northeastern Tibet, but no major earthquake has occurred in the past ∼100 years, since the Haiyuan M8.5 event in 1920. The current state of strain accumulation and seismic potential along the fault zone have attracted significant attention. In this study, we obtained the interseismic deformation field along the Haiyuan fault zone using Envisat/ASAR data in the period 2003–2010, and inverted fault kinematic parameters including the long-term slip rate, locking degree and slip deficit distribution based on InSAR and GPS individually and jointly. The results show that there is near-surface creep in the Laohushan segment of about 19 km. The locking degree changes significantly along the strike with the western part reaching 17 km and the eastern part of 3–7 km. The long-term slip rate gradually decreases from west 4.7 mm/yr to east 2.0 mm/yr. As such, there is large strain accumulation along the western part of the fault and shallow creep along the Laohushan segment; while in the eastern section, the degree of strain accumulation is low, which suggests the rupture segments of the 1920 earthquake may have been not completely relocked. Full article
Show Figures

Graphical abstract

17 pages, 3565 KiB  
Article
Locking Status and Earthquake Potential Hazard along the Middle-South Xianshuihe Fault
by Rumeng Guo, Yong Zheng, Wen Tian, Jianqiao Xu and Wenting Zhang
Remote Sens. 2018, 10(12), 2048; https://doi.org/10.3390/rs10122048 - 17 Dec 2018
Cited by 30 | Viewed by 4823
Abstract
By combining the seismogenic environment, seismic recurrence periods of strong historical earthquakes, precise locations of small–moderate earthquakes, and Coulomb stress changes of moderate–strong earthquakes, we analyze the potential locking status of a seismically quiet segment of Xianshuihe fault between Daofu County and Kangding [...] Read more.
By combining the seismogenic environment, seismic recurrence periods of strong historical earthquakes, precise locations of small–moderate earthquakes, and Coulomb stress changes of moderate–strong earthquakes, we analyze the potential locking status of a seismically quiet segment of Xianshuihe fault between Daofu County and Kangding City (SDK). The interseismic surface velocities between 1999 and 2017 are obtained from updated global positioning system (GPS) observations in this region. After removing the post-seismic relaxation effect caused by the 2008 Mw 7.9 Wenchuan earthquake that occurred around the fault segment, the observed velocities reveal a pronounced symmetric slip pattern along the SDK trace. The far field slip rate is 7.8 ± 0.4 mm/a, and the fault SDK is confirmed to be in an interseismic silent phase. The optimal locking depth is estimated at 7 km, which is perfectly distributed on the upper edge of the relocated hypocenters. A moment deficit analysis shows cumulative seismic moment between 1955 and 2018, corresponding to an Mw 6.6 event. Finally, based on a viscoelastic deformation model, we find that moderate–strong earthquakes in the surrounding area increase the Coulomb stress level by up to 2 bars on the SDK, significantly enhancing the future seismic potential. Full article
(This article belongs to the Special Issue Environmental and Geodetic Monitoring of the Tibetan Plateau)
Show Figures

Graphical abstract

20 pages, 12215 KiB  
Article
InSAR-Constrained Interseismic Deformation and Potential Seismogenic Asperities on the Altyn Tagh Fault at 91.5–95°E, Northern Tibetan Plateau
by Chuanjin Liu, Lingyun Ji, Liangyu Zhu and Chaoying Zhao
Remote Sens. 2018, 10(6), 943; https://doi.org/10.3390/rs10060943 - 14 Jun 2018
Cited by 32 | Viewed by 5738
Abstract
The present-day kinematic features of the different segments of the Altyn Tagh Fault (ATF) have been well-studied using geodetic data. However, on the eastern segment of the ATF at 91.5–95°E, high spatial resolution deformation has not been previously reported. Here, we processed 185 [...] Read more.
The present-day kinematic features of the different segments of the Altyn Tagh Fault (ATF) have been well-studied using geodetic data. However, on the eastern segment of the ATF at 91.5–95°E, high spatial resolution deformation has not been previously reported. Here, we processed 185 interferometric synthetic aperture radar (InSAR) images from three descending tracks of the C band ERS-1/2 and Envisat satellites spanning 1995–2011 and obtained the average deformation velocity field. Results show a left-lateral motion of ~4 mm/year along the fault-parallel direction across the ATF at 91.5–95°E, which is consistent with Global Positioning System (GPS) observations. The slip deficit rate distribution at shallow depths was resolved through the InSAR deformation velocity using a discretized fault plane. The slip deficit is capable of an Mw 7.9 earthquake, considering the elapsed time of the latest M 7.0 event. Two potential asperities that could be nucleation sites or rupture areas of future earthquakes were delineated based on the coupling coefficient and seismicity distributions along the fault plane. The larger asperity extends more than 100 km along the ATF at depths of 8–12 km. Our InSAR observations support the undeformed blocks model of the Indo-Eurasian collisional mechanism at the northern margin of the Tibetan plateau. Full article
(This article belongs to the Special Issue Remote Sensing of Tectonic Deformation)
Show Figures

Graphical abstract

Back to TopTop