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Abstract: The East Kunlun fault zone (EKFZ), located northeast of the Qinghai–Tibet Plateau, has
experienced several strong earthquakes of magnitude seven or above since 1900. It is one of the most
active fault systems and is characterized by left-lateral strike-slip. However, the Xidatan–Dongdatan
segment (XDS) of the East Kunlun fault zone (EKFZ) has had no earthquakes for many years, and
the Kunlun Mountains MS 8.1 earthquake has a stress loading effect on this segment, so it is widely
regarded as a high-risk earthquake gap. To this end, we collected the Sentinel-1 data of the XDS of
the EKFZ from July 2014 to July 2019 and obtained the high-precision interseismic deformation field
by the Interferometric Synthetic Aperture Radar (InSAR) technique to obtain the slip rate and locking
depth of the XDS of the EKFZ, and the seismic potential of the segment was analyzed. The results
are as follows: (1) The LOS deformation field of the XDS of the EKFZ was obtained using Sentinel-1
data of ascending and descending orbits, which indicated that the XDS of the EKFZ is dominated
by horizontal motion. Combined with the interference results, it is shown that the strike-slip rate
dominates the deformation information of the XDS of the EKFZ. The deep strike-slip rate of the
fault is about 6 mm/yr, the deep dip-slip rate is about 2 mm/yr, and the slip-deficit rate on the fault
surface is about 6 mm/yr; (2) Combined with the spiral dislocation theory model, the slip rate of
the XDS to Xiugou Basin of the EKFZ has a gradually increasing trend, with an average slip rate of
9.6 ± 2.3 mm/yr and a locking depth of 29 ± 5 m; (3) The stress accumulation is about 483 ± 92 years
in the XDS of the EKFZ, indicating that the cumulative elastic strain energy of the XDS can produce
an MW 7.29 ± 0.1 earthquake in the future.

Keywords: East Kunlun fault zone; Xidatan–Dongdatan segment; InSAR; interseismic deformation;
slip rate; locking depth; seismogenic depth

1. Introduction

The East Kunlun fault zone is one of the famous faults and is accompanied by a
left-lateral strike-slip structure in mainland China. It stretches for more than a thousand
kilometers and traverses the central part of Qinghai Province from east to west. It starts
from the west of Whale Lake (the border between Qinghai Province and Xinjiang Province),
through Kusai Lake, Xidatan–Dongdatan, Xiugou Basin, Alag Hu, Tuosuo Lake, Xiadawu,
and Maqin in the east and extends to the east of Maqu in Gansu Province [1]. Up to
now, about 70 paleoseismic events have been discovered in the EKFZ in Qinghai Province,
and these earthquakes are approximately evenly distributed in various segments between
Katabanfeng and Maqu, forming a vast earthquake surface fracture zone and stretching
nearly 1000 km. Through the analysis of the paleoseismic catalog, it is concluded that
the number of historical earthquakes in the EKFZ accounts for about 3/4 of the entire
Bayanhar Mountains seismic zone, and it is the central active region of the Bayanhar
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Mountains seismic zone. The frequency of the EKFZ seismic activity from high to low is as
follows: the west segment, the east segment, the middle west segment, and the middle east
segment [2–4].

Since 1900, the EKFZ has experienced several strong earthquakes of magnitude seven
or above, such as the 1937 Huashixia MS 7.5 earthquake, the 1963 Dulan MS 7.0 earthquake,
the 1973 Mani MS 7.3 earthquake, the 1997 Mani MS 7.5 earthquake, and the 2001 Kunlun
Mountains MS 8.1 earthquake. These earthquakes are mainly concentrated in the western
and middle eastern segments of the EKFZ [5,6]. Among them, the 2001 Kunlun Mountains
MS 8.1 earthquake had a stress loading effect on the Xidatan–Dongdatan segment (XDS)
of the EKFZ [7–12]. Therefore, the XDS of the EKFZ is worthy of attention for future
strong earthquakes. Scholars have also verified this view through paleoseismic identifi-
cation, earthquake repetition interval determination, and model probability calculation
(e.g., [3,7–10]). Based on a variety of basic methods such as seismic geology, geodesy, and
geophysics, the Working Group of Seismic Situation in Mainland China gives the determi-
nation results of key earthquake risk areas in China from 2021–2030, among which the XDS
of EKFZ is one of the key risk areas (red dashed circle in Figure 1a; [11,12]). At present, the
study of the tectonic movement characteristics of the EKFZ mainly focuses on the long-term
slip rate on the eastern and western members, such as, from west to east, the slip rates of
the EKFZ are 10.0–2.0 mm/yr [13] and 14.8–9.4 mm/yr [14]; the slip rate of Maqin since
the late Pleistocene is 12.5 mm/yr [15]; from late Pleistocene to Holocene, the slip rate of
the Maqu segment is 10.15–2.0 mm/yr, and it is speculated that the slip rate of the Maqu
segment shows the gradient attenuation [16–19]. On the west segment of the EKFZ, the
slip rate is 10–12 mm/yr [20], and in the Mani earthquake of the west segment of EKFZ,
the interseismic slip rate is 10.2 mm/yr [21]. However, there is less research on the XDS,
which is a large earthquake gap with a higher future earthquake risk.
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Figure 1. Seismotectonic background map of the East Kunlun Fault Zone (EKFZ). Faults are mod-
ified from [22] and are superimposed on the Digital Elevation Models (DEMs) from the Shuttle Figure 1. Seismotectonic background map of the East Kunlun Fault Zone (EKFZ). Faults are modified

from [22] and are superimposed on the Digital Elevation Models (DEMs) from the Shuttle Radar
Topography Mission (STRM). (a) The red dashed circle is the middle and long danger zone from
201–2030. The bold red line represents the EKFZ. The red five-pointed stars represent the historical
earthquakes of the EKFZ. The dashed blue box indicates the InSAR data coverage. The black lines
represent the rough surface rupture of the historical earthquakes [23,24]. The black dots are the
historical earthquakes surrounding the EKFZ. The gray lines represent secondary faults around
the study area. The yellow arrows represent GPS velocity fields at the regional. (b) Macroscopic
distribution of the study area. T B is the Tarim Basin. G-A S P is the Gobi-Ala Shan Platform. T
P is the Tibetan Plateau. The blue lines show the main faults around the EKFZ. Altyn Tagh Fault
(ATF), Haiyuan Fault (HYF), Ganzi–Yushu Fault (GZ-YS), Xianshuihe Fault (XSHF), Longmenshan
Fault (LMS).
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The XDS of the EKFZ is located between the 2001 Kunlun Mountains MS 8.1 earthquake
and the 1963 Dulan MS 7.0 earthquake, and it is a seismic gap in the EKFZ and an earthquake
risk region in Mainland China (Figure 1a). It is of great practical significance to study the
current locking degree and slip deficit characteristics of the XDS for further understanding
of earthquake risk in this region and more scientific and practical earthquake prevention
and disaster reduction. In recent years, with the accumulation of InSAR data and the
continuous updating of data processing technology, not only can we obtain the crustal
deformation field during interseismic periods in fault zones but also timely and effectively
obtain large-range high-precision deformation and strain accumulation characteristics of
fault by InSAR technology (e.g., [19,25–30]). As shown in Figure 1a, the altitude of the
study area is relatively high, resulting in less GNSS measurement data, but SAR satellite
data can comprehensively cover it. From July 2014 to July 2019, there are data on both the
ascending and descending orbits on the XDS of the EKFZ, which can ensure the integrity of
the data and no earthquakes occurred during this period, which can ensure the reliability
of the results of the interseismic deformation field of the XDS of the EKFZ. Therefore, we
collected the Sentinel-1 data of the XDS of EKFZ from July 2014 to July 2019 to study the
kinematic characteristics (such as the locking depth and the slip rate) of the XDS combined
with InSAR technology. Based on this, the sectional activity of the XDS of the EKFZ and
the difference in tectonic movement among each segment are discussed, and the seismic
potential or magnitude in this area is analyzed.

2. InSAR Data and Interseismic Velocity Field
2.1. InSAR Data

Interferometric Synthetic Aperture Radar (InSAR) was first proposed by L.C. Gra-
ham [31]. It is a three-dimensional imaging concept and is used as a spatial geodetic
technology developed in recent decades. Unlike traditional geodesy techniques (GPS,
Leveling, etc.), InSAR technology can measure crustal deformation fields with high spatial
resolution [31–35]. At present, SAR satellite data are rich, have high precision, are not
constrained by time and climate, etc., and are widely used in monitoring geological dis-
asters, earthquake disasters, volcanic activities, city subsidence, and railway subsidence
(e.g., [36–43]). This paper uses data from the European Space Agency (ESA) Sentinel-1
satellite. Compared with other satellites, Sentinel-1 has the advantages of a short revisit
period and high orbital accuracy [33]. Since the launch of the satellite, Sentinel-1 data
have been widely used in the study of coseismic deformation, such as the 2014 Napa
California MW 6.1 earthquake [38,44,45], the 2015 Nepal MS 8.1 earthquake [39,46], and
the 2017 Jiuzhaigou MS 7.0 earthquake [40,47]. With the accumulation of SAR satellite
data over the years and the continuous improvement of InSAR data processing technology,
InSAR technology should also obtain an extensive range and high-resolution fault tectonic
deformation field (e.g., [19,25,27–30,48,49]).

2.2. InSAR Data Processing Method

In this paper, InSAR data are processed using the GAMMA commercial software
platform [50]. The interseismic deformation field was mainly obtained from the Sentinel-1
SAR satellite data by using the Stacking method. The method was proposed by Wright
et al. [51] in 2001. It is a sequential InSAR algorithm that utilizes linear stacking of multi-
ple unwrapped differential interferometry phase graphs to minimize atmospheric errors
and improve the accuracy of the deformation rate [51–53]. The principle of the Stacking
method assumes that in an independent interferogram, the error phase of atmospheric
disturbance is random, and the deformation rate is linear. Then, the average deformation
rate in the superposition time range of the study area can be obtained by calculating the
average superposition of the phases unwinding corresponding to multiple independent
interferograms [51–56]. The specific data processing flow is shown in Figure 2.
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In this study, a total of 136 Sentinel-1 SAR images covering the XDS of the EKFZ
were obtained from July 2014 to July 2019, with 64 ascending and 72 descending orbit
images. The spatial range of these data was centered on XDS, 330 km in the NS directions
and 280 km in the EW directions (Figure 1a; Table 1). We set the multi-look factor of the
interferogram to 100:30, and the corresponding pixel size was about 420 m × 420 m, from
which pixels with a coherence degree of about 0.2 were selected for phase unwrapping.
Interferograms spanning a short time interval tend to have higher coherence. However,
they make small tectonic signals, such as those across the XDS of the EKFZ, more difficult
to detect. To minimize geometric decorrelation and errors due to the topography and
maximize the deformation signal in the interferogram [25,51–53], we selected pairs of
images by constraining the perpendicular and temporal baselines simultaneously. So, to
improve the signal-to-noise ratio of interseismic deformation, we selected interferograms
based on two criteria (Table 2; Figure 3). (1) Image pairs with temporal baselines of different
Days were employed to maximize the deformation signal in the interferograms. (2) Due to
the topography of the XDS of the EKFZ being very undulating, spatial baselines (separation
between orbits) of less than 10 m, 100 m, and 200 m were used to minimize topography
error influences, respectively. As can be seen from Table 2, the temporal and perpendicular
baselines are coordinating relations and should be met simultaneously. (1) When the
temporal baseline is less than 90 days, the perpendicular baselines must be less than 10 m;
(2) When the temporal baselines are between 275 and 455 days, the perpendicular baselines
must be less than 100 m; (3) When the temporal baselines between n + 275 and n + 455 days
(n is an integer multiple of 365), the perpendicular baselines must be less than 200 m.

Table 1. Sentinel-1 SAR image and interferogram count.

Flight
Direction

Track
Number

Number of
Images

Number of Selected
Image Number

Number of
Interferograms

Number of Selected
Interferograms

A * 172 64 63 662 165
D * 004 72 41 974 304

* A is the ascending orbit, and D is the descending orbit.
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Table 2. Constraint Criteria of Temporal and Perpendicular Baselines.

No. Temporal Baseline (Days) ∆T Perpendicular Baseline (Meter) ∆P

1 ∆T < 90 Days ∆P ≤ 10 m
2 275 Days < ∆T < 455 Days ∆P ≤ 100 m
3 n + 275 Days < ∆T < n + 455 Days * ∆P < 200 m

* n is an integer multiple of 365.
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2.3. InSAR Inversion Interseismic Velocity Field

The inverse slip dislocation theory is a commonly used method to describe slip rate
distribution in the interseismic period [58,59]. This theory assumes that the movement of all
points inside the fault is determined by the rotation of the fault and the deformation inside
the fault, and then the surface deformation caused by the slip deficit is determined by the
blocking depth at the fault surface. Therefore, based on the inverse slip dislocation theory,
various models (such as the angular dislocation model, rectangular dislocation model,
elasticity model, viscoelasticity model, and layered viscoelasticity model) developed to
simulate the observed velocities in the interseismic period by researchers and implemented
them with code and software, such as TDEFMPDE code [60], Blocks code [61,62], and
the software of viscoelastic model layered [63,64]. Since the viscoelastic properties of the
crustal medium have no significant influence on the observed interseismic velocity [19,64],
the slip rate of the XDS of the EKFZ in the interseismic period was estimated using the
elastic medium.

As shown in Figure 1a, multiple branch faults in the XDS of the EKFZ are distributed,
and the tectonic background is complex [19,65], so the far-field loading rate [66] or geo-
logical slip rate [67] could determine the long-time slip rate of the XDS of the EKFZ. On
this basis, combined with the inverse slip dislocation theory, it can be seen that the locking
degree of the fault interseismic period is a quotient of the interseismic slip-deficit rate and
the interseismic long-time slip rate [19,59]. Therefore, we assume that the interseismic
deformation observed by InSAR expresses the loading rate of the far field [61,62,67–71].
A reliable and more informative constrained least square method is used to invert the
interseismic slip distribution of the XDS of EKFZ [19,72]. Then, the degree of current fault
surface occlusion is estimated.

3. Study of the Interseismic Velocity Field in the XDS
3.1. InSAR Interseismic Velocity Field Analysis

Sentinel-1 SAR data processing mainly involves several critical problems: (1) In image
precision registration, to ensure the accuracy of image registration, orbit information,
external Digital Elevation Model (DEM), and intensity map should first be used for initial
registration, and then enhanced spectral diversity should be used for azimuth registration
to achieve fine registration [54,73]; (2) When generating differential interferogram, use the
30 m spatial resolution SRTM DEM released by NASA to simulate and eliminate terrain
phase; (3) Considering that dense vegetation, snow and ice cover, climate variability, and
other factors in the study area lead to poor coherence of the interferogram, it is necessary
to conduct multi-view processing and filtering processing on the interferogram. In the
interferogram process, two multi-look processes are adopted: the first multi-look factor was
set to 10:3, and the second multi-look factor was set to 100:30. After multi-view processing,
the Goldstein filter was used to improve the coherence further [74]; (4) Based on prior
fault information, the initial deformation model was constructed to estimate and remove
orbit errors; (5) The Generic Atmospheric Correction Online Service (GACOS) was used
to estimate the effects of atmospheric vertical stratification, and time-domain high-pass
and spatial-domain low-pass filtering were used to estimate the effects of atmospheric
turbulence delay [75,76]. Finally, the high accuracy and high spatial resolution mean
deformation rate field was obtained in the study area based on the mature temporal InSAR
technology Stacking (Figure 4).

As shown in Figure 4, the ascending orbit deformation is opposite to the descending
orbit deformation direction, indicating that horizontal movement is the primary movement
in this area. In the vicinity of the XDS of the EKFZ, there is the maximum difference in
the InSAR deformation field of ascending and descending orbits, and they accord with
the movement characteristics of a left-lateral strike-slip fault, indicating that the XDS of
the EKFZ mainly influences the crustal deformation in this area. In Figure 4a, the InSAR
deformation field in the LOS direction of the A172 has a significant velocity difference of
about 2–5 mm/yr along the fault and its extension, and the velocity step is mainly near the
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XDS of the EKFZ. There is no significant large-scale difference in other faults. Figure 4b
shows that the InSAR deformation field in the LOS direction of the D004 shows this feature
and a minor velocity difference of about 1–4 mm/yr near the fault. Therefore, the overall
deformation characteristics of the XDS of the EKFZ are small near-field movement and
large far-field movement, which is a typical feature of strike-slip fault [19,58].
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Figure 4. InSAR interseismic velocity field of the XDS. The red dotted circle represents the danger
zone (same as in Figure 1). The black line represents the main fault of the EKFZ, The yellow
arrows represent GPS velocity fields at the regional, and the gray lines represent the faults around the
EKFZ [22]. (a) The ascending orbit 172, AA’: the profile line of the ascending orbit. (b) The descending
orbit 004, DD’: the profile line of the descending orbit.

3.2. Accuracy Evaluation of InSAR Interseismic Velocity Field

There are two main methods to appraise the precision of the InSAR interseismic
deformation results. The first method compares it with GPS results; the second method
calculates the standard deviation (SD) of the velocity differences in the overlapping area
of adjacent independent orbits [19,30,54,77,78]. This paper used the image data of the
ascending and the descending, so the accuracy was by GPS results. We extracted the profile
line of the ascending orbit (AA’) (Figure 4a) and the descending orbit (DD’) (Figure 4b),
respectively, to compare the GPS and InSAR results. The profile line position is shown
in Figure 4. The profile line length was 150 km on each side of the fault. GPS data
were extracted within 120 km on each side of the profile line. InSAR data were extracted
within a 50 km width on each side of the profile line. Since InSAR data and GPS data
respectively represent deformation rates in different directions, and the activity of the EKFZ
is a left-lateral strike-slip, we can ignore the vertical motion component of the EKFZ [19,79].
Therefore, before data extraction, we used the mathematical Formula (1) to convert the
GPS-observed data into the deformation rate in the LOS direction using the flight azimuth
and radar incidence angle [56,80].

DLOS = (− sin θ cos α)× DEW + sin θ sin α × DNS (1)

where DLOS is the deformation rate in the LOS direction of radar, DEW and DNS are the
horizontal east–west deformation rate and north–south deformation rate of GPS, α is the
flight azimuth angle, and θ is the radar incidence angle. Secondly, to correct the offset
between the GPS data and the reference datum of the InSAR data, the average value corrects
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the extracted GPS rate. It is compared with the deformation rate in the InSAR LOS direction.
The profile of GPS and InSAR deformation rate is shown in Figure 5. From the perspective
of visual effect, the two independent data sets of GPS and InSAR have a high degree of
agreement. The independent horizontal GPS measurements agree well with the InSAR
measurements, which not only supports the hypothesis of minimum vertical deformation
but also confirms that the EKFZ movement is mainly horizontal [19,79]. Finally, the SD is
1.87 mm/yr between the InSAR deformation rate of the ascending LOS and GPS, and the
SD is 2.45 mm/yr between the InSAR deformation rate of the descending LOS and GPS.
Therefore, it can be concluded that the measurement accuracy of the InSAR interseismic
velocity field is better than 3 mm/yr.
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(b) DD’ profile in the descending orbit.

4. Interseismic Deformation Modeling Based on InSAR
4.1. Parameters and Smoothing Factors of the Fault Geometry Model

The geometric model parameters of the fault should be determined before the inter-
seismic deformation model based on the InSAR-derived model. The following reasons
should be considered before establishing the geometric models of the XDS of the EKFZ.
(1) From Figure 4, we can see that the EKFZ mainly influences all the deformation informa-
tion in the research area, so we do not need to consider the effects of other faults during the
inversion process; (2) According to the previous studies, the dip of the XDS of EKFZ ranges
from 70◦ to 90◦ [19,81]. We performed some search calculations to determine the fault dip
angle. After varying the fault dip angle intervals and calculations several times, the results
are shown in Figure 6a, and if the fault dip angle of the XDS of the EKFZ was set to 90◦, the
fitting residual was the smallest. Therefore, the fault dip angle of the XDS of the EKFZ was
set to 90◦ when the fault model was established (Figure 6b); and (3) According to the inverse
slip dislocation theory, the fault planes can be divided into upper and lower parts [71,82].
The upper part is responsible for the near-field deformation signal and is assumed to be
the seismogenic fault. Its depth is determined to be 20 km by the source depth of the
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repositioned earthquake. The lower part is responsible for the far-field deformation signal
and is assumed to be an elastic layer, and its depth is set to 80 km according to the depth of
the lower boundary of the lithosphere [83]. In addition, we tested the slip rate distribution
at depths of 20 km, 40 km, 60 km, and 80 km, respectively, and concluded that the slip rate
distribution varied little when the section depth was about 40 km.
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4.2. Modeling Effects and Locking Degree Distribution in the XDS

The angular dislocation model can not only depict complex fault planes well but
also avoid tearing caused by strike-slip direction deformation [64,68,84]. Therefore, the
interseismic slip rate distribution in the XDS of the EKFZ was inverted with the InSAR
average velocity field as a constraint (Figure 4). Figure 7 shows the interferogram fitting
results, in which Figure 7a,d show the InSAR observation results of the ascending and de-
scending orbits; Figure 7b,e show the interference results of the ascending and descending
orbits; Figure 7c,f show the residual results of observation results and interference results;
Figure 7g,h show the residual histograms of Figure 7c,f respectively; and Figure 7i shows
the curve of model roughness and fitting residual L, with the optimal smoothing factor
of 0.5. The overall fitting is reasonable, combined with the deformation characteristics
of the region and the deformation characteristics of the near field of the fault. However,
because some artifact signals in the local far-field signals were not entirely removed in the
preprocessing stage and could not be fitted, they were deducted. Even if they were true
deformation signals, they were too far from the XDS of the EKFZ to have anything to do
with the movement of the XDS of the EKFZ.
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Figure 7. Modeling results and error statistics. The black line represents the main fault of the XDS
of the EKFZ. (a,d) The InSAR observation results of the ascending and descending orbits. (b,e) The
interference-fitting results of the ascending and descending orbits. (c,f) The residuals of the two
results. (g,h) The residual histograms of (c,f). (i) The L-curve of model roughness and fitted residual,
and the red dot represents the optimal smoothing factor.

Figure 8 shows the distribution of the slip rates on the fault plane, and the fault is in
motion in the depth range. In Figure 8a, the deformation information of XDS of the EKFZ
is dominated by the strike-slip rate. The deep strike-slip rate of the fault is about 6 mm/yr,
and the maximum locked depth is about 30 km. In Figure 8b, the distribution of the dip-slip
rate is limited to 2 mm/yr in the fault deep. In Figure 8c, the distribution of the slip loss is
about 6 mm/yr on the fault surface.
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Figure 8. Interseismic slip distribution of the fault plane. (a) Strike-slip rate, in which negative values
indicate left-lateral strike-slip motion to the east. (b) Dip-slip rate, in which the red (negative) values
represent downward motion. White (positive) values indicate upward motion. (c) Am-slip rate
represents the distribution of the slip-deficit rate on the fault plane.

5. Discussion
5.1. Present-Day Strain Distribution around the XDS of the EKFZ

It can be seen from Figure 4 that the InSAR deformation field captured the deformation
gradient of the XDS of the EKFZ. However, there are other large local deformation gradients
in the deformation field, which may be related to glacier, landslide, seasonal frozen soil,
or other non-tectonic factors [85]. Therefore, the three-dimensional deformation field of
the XDS of the EKFZ was constructed by integrating the previously published GNSS
observations [86,87] combined with the InSAR deformation observations obtained from
the ascending and descending orbits (Figure 9a–c). Figure 9a shows the E-W velocity
component in the study area, and a velocity gradient was observed along the XDS of the
EKFZ, indicating that a shear strain rate concentration is located in this region. Figure 9b
shows the N-S velocity component in the study area, and there is no obvious velocity
gradient along the XDS of the EKFZ. Figure 9c shows the velocity component in the vertical
direction, and there is no obvious velocity gradient along the XDS of the EKFZ.

The strain rate field is one of the important constraints on tectonic deformation and
allows for assessing seismic risks [19,42,88–90]. In this study area, we obtained the second
strain rate invariant of the XDS of the EKFZ based on the three-dimensional deformation
field (Figure 9d). As can be seen from Figure 9d, the accumulation of strain is mainly
concentrated in the southeast direction of the Kusai Lake segment of EKFZ (F1-1), the
XDS of the EKFZ (F1-2), and Tuosuo Lake segment (F1-3), with the accumulation amount
of about 80 nano-strain, and other regions are diffused. It can be inferred that the EKFZ
dominates the strain model in the Qinghai–Tibet area and that the 2001 Kunlun Mountains
MS 8.1 earthquake has a loading effect on the strain accumulation of F1-1 and extends to
the southeast direction.
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ond strain rate invariant of the XDS of the EKFZ based on the three-dimensional defor-
mation field (Figure 9d). As can be seen from Figure 9d, the accumulation of strain is 
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Figure 9. The three-dimensional deformation field and second invariants of the strain rates of the
XDS. The blue line is the main fault of the EKFZ, and the gray line represents faults (same as in
Figure 4) [22]. The red dotted circle represents the danger zone (same as in Figure 1). (a) Velocity
in the eastern direction. (b) Velocity in the northern direction. (c) Velocity in the vertical direction.
(d) Second invariants of the strain rates (The black five-pointed star is the fault position obtained by
the inversion of spiral dislocation. The black dashed line is the position of the fit profile. The red
five-pointed star is the 2021 Maduo MW 7.4 earthquake. The white dotted line is presumed to be
the extension direction of the Jiangcuo fault. The red line is the Maduo surface rupture [24]). (F1-1:
Kusai Lake segment of EKFZ, F1-2: the XDS of EKFZ, F1-3: Tuosuo Lake segment of EKFZ, F1-4:
Maqin–Maqu segment of EKFZ, F2: Middle Kunlun fault, F3: Qaidam south margin fault, F4: Qaidam
north central fault, F5: Qaidam north margin fault, F6: Dagou–Changmahe fault, F7: Maduo–Gande
fault, F8: Jiangcuo fault, F9: Dari fault, F10: Bayanqala fault, F11: Wudaoliang–Changsha Gongma
fault, F12: Wudaoliang–Qumalai fault).

In the strain rate diagram (Figure 9d), we noticed that the strain variables east of the
XDS of the EKFZ are not concentrated on a single fault, such as the Middle Kunlun fault
(F2), Dagou–Changmahe fault (F6), and Maduo-Gande fault (F7). This dense strain rate
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field also accords with the diffuse distribution, and it can be seen that the strain rate is
absorbed not only by the fault systems but also by the deformation of the small blocks
separated by faults. The faults north of the EKFZ include the Qaidam south margin fault
(F3), Qaidam north central fault (F4), and Qaidam north margin fault (F5), and they are
collectively referred to as the Qaidam fault. The strain rate is not significantly at the
Qaidam fault but cannot be ignored. The faults south of the EKFZ include Jiangcuo fault
(F8), Dari fault (F9), Bayanqala fault (F10), Wudaoliang–Changsha Gongma fault (F11), and
Wudaoliang–Qumalai fault (F12). It is noteworthy that the strain rates of Jiangcuo, Dari,
Bayanqala, and Wudaoliang–Changsha Gongma faults are significant, which may be mainly
caused by the 2001 Kunlun Mountains MS 8.1 earthquake. From a regional perspective
(Figure 1a), the Jiangcuo fault belongs to the secondary fault on the south side of the
EKFZ, and its westward extension could be connected with the 2001 Kunlun Mountains
MS 8.1 earthquake, so the predecessor also referred to the two as Kunlun Mountain Pass–
Jiangcuo fault [91]. The Maduo earthquake occurred in 2021, and field research showed
that the earthquake produced a coseismic surface rupture zone with the characteristics of
a left-lateral strike-slip in a field of about 151 km (Red line in Figure 9d). Based on this,
it is inferred that the Jiangcuo fault extends along the southeast direction (white dotted
line in Figure 9d) and is connected with the surface rupture generated by the 2021 Maduo
MW 7.4 earthquake. Further, it confirms that the 2021 Maduo MW 7.4 earthquake resulted
from the further southeast migration of the strain energy of the 2001 Kunlun Mountains
MS 8.1 earthquake along the EKFZ [24].

5.2. Seismogenic Potential of the XDS of the EKFZ

In the introduction, a detailed description was given of the scholars’ analysis and study
of various seismic data [7–9], model method [10], and coulomb stress variation [92–95], all
of which indicate that with the occurrence of strong earthquakes in the surrounding area of
the XDS of EKFZ, the possibility of strong earthquakes in this area increases significantly.
Therefore, it is necessary to study the seismic potential of the XDS of the EKFZ.

The interseismic fault-locking technology has been widely used in focal fault risk
assessment and earthquake potential magnitude estimation. During interseismic periods,
the strengthening of fault contraction indicates that the coupling degree between fault
planes in this region is high, increasing strain accumulation. Therefore, it can be considered
that there is a high-incidence area of earthquakes in this region [19,30,96]. The interseismic
locking area is constrained using the high precision and high-density geodetic observation
data, and the approximate range of coseismic slip is determined based on it. Based on the
long-term fault slip rate and the time of the recent earthquake, we can estimate accurately
the potential magnitude of the earthquake in this study area. According to the distribution
of the slip-deficit rate shown in Figure 8c, the moment accumulation (M0) can be calculated
through the first-order relation [29,30]. The relationship (Formula (2)) is as follows:

M0 = µUA (2)

where A represents the area of the fault patch, µ represents the shear modulus, set to be
30 GPa, and U represents the slip-deficit rate from the inversion. The XDS of EKFZ is
a large seismic void region, but through geological mapping and dating, scholars have
revealed that there have been at least six paleoseismic events in this section since the
Holocene, and the last paleoseismic event was 1540 ± 92 aB.P. [3,7,15,97,98], so we surmised
that the stress accumulation in the XDS of EKFZ lasted about 483 ± 92 years. Over
483 years, the cumulative elastic strain energy of the XDS of the EKFZ can produce an MW
7.29 ± 0.1 earthquake in the future. However, by using quantitative geological data and
other methods, the former people speculated that there is an M (7.5~8.0) earthquake risk in
the XDS of the EKFZ [3,9,15,81], which is different from the research results in this paper.
According to the literature review, the reasons may be as follows: (1) This paper does not
consider the stress loading effect of the left-lateral slip of the 2001 Kunlun Mountains MS
8.1 earthquake on the XDS of EKFZ [7,92,93,97]; (2) The time of earthquake recurrence may
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be inconsistently defined due to faulting habits and the incompleteness of paleoseismic
events [3,9,15,81], and the time definition in this paper is small; (3) Combined with the
statistical slip rate in Table 3, it can be inferred that the slip rate of InSAR inversion in
this paper is smaller than that of geological estimation [15,99,100]. To sum up, the XDS is
undoubtedly the most dangerous area for future large earthquakes in the EKFZ, which
needs special attention.

Table 3. The slip rate from XDS to Xiugou Basin of EKFZ.

Position Dislocation Maker Method Age (ka) Dislocation
Distance (m)

Slip Rate
(mm/yr) Reference

XDS Terrace dislocation Cosmogenic nuclide 2.4~11.8 23~174 10-15 [99,101]
XDS Terrace dislocation Cosmogenic nuclide 1.8~8.1 24~110 11.7 ± 1.5 [15,81,98]
XDS Terrace dislocation Thermo luminescence 262~335 2970 ± 30 11.6 ± 0.9 [100]
XDS NA InSAR NA NA 9.8 ± 2.3 This study

Xiugou west Alluvial fan
dislocation Thermo luminescence 297 ± 19 2970 ± 30 10.1 ± 0.8 [100,102]

Xiugou
middle Terrace dislocation Cosmogenic nuclide 6.3~8.1 90 ± 5 12.9 ± 2.9 [15,81,98,100]

Xiugou NA InSAR NA NA 8 ± 3 This study

5.3. Variations of the Present-Day Slip Rate in the XDS of the EKFZ

In this paper, there are some errors in the data collection and processing of the ascend-
ing and descending orbit. Therefore, to ensure the accuracy of data processing in advance,
based on the discrete GPS data and the InSAR deformation rate field of the ascending and
descending orbits, we obtained the three-dimensional crustal deformation field in the study
area (Figure 9a–c), and the fault movement characteristics in the study area were obtained
by inversion fitting. It can be seen that most regions have been uplifted, but the localization
of this phenomenon is remarkable from Figure 9c, indicating that the vertical motion may
contain a large number, including non-tectonic deformation. Therefore, we only considered
the horizontal motion components and ignored the vertical motion components in this
study. Since the InSAR deformation measurement is based on the reference range of radar
LOS, it should first be converted into the deformation rate in the parallel fault direction
through Formula (3), and the profile location was selected, as shown in Figure 9. The fault
strike parameters at the profile were set to 90◦, 88.95◦, 94.96◦, 104◦, 97.20◦, 100.5◦, and
105.62◦, which were all perpendicular to the fault strike. Secondly, according to Savage
et al., the theoretical model formula of spiral dislocation (Formula (4)) was given to invert
the current active motion characteristics of the study area [58]. The final fitting results in
the parallel direction of the fault are shown in Figure 10.

D f ault = Vn cos β + Ve sin β (3)

V0 = Vre f + V ∗ a tan((X0 − X)/D)/PI (4)

where in Formula (2), Dfault represents the parallel deformation rate, Vn represents the
north deformation rate, Ve represents the east deformation rate, and β represents the fault
strike. In Formula (3), V0 represents the observed value, Vref represents the overall offset, V
represents the fitting slip rate, X0 represents the distance between the observed value and
the fault, X represents the distance between the fitting value and the fault, and PI is π.

In this study, by using the discrete GPS data and the InSAR deformation rate field, the
three-dimensional crustal deformation field of the XDS of the EKFZ was obtained. Using
seven profiles of the InSAR deformations as constraints, the spiral dislocation model used
estimated the locking depth of the XDS to be 29 ± 6 m, the average slip rate of the XDS (P1–
P6) to be 9.8 ± 2.3 mm/yr, the locking depth of Xiugou Basin to be 26 m, and the average
slip rate of Xiugou Basin (P7) slip to be 8 ± 3 mm/yr, among which the fitted locking
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depth is basically consistent with the previous modeling results (Figure 8). The results
of this paper are compared with the slip rate obtained by previous geological mapping
and dating (Table 3, e.g., [15,99,100]). The average slip rate of the XDS to Xiugou Basin
of EKFZ obtained by this study is basically consistent with them and is also close to the
10~12 mm/yr slip rate of the EKFZ observed by GPS today [20,86]. It can be seen from
Figure 10 that the slip rate of the XDS gradually increases from west to east, and the fitting
values of P1, P2, and P3 are relatively small, which may be caused by the sparse observed
number of the InSAR deformation at these three profile locations, but it does not affect the
accuracy of the results.
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Figure 10. Section view of the XDS of the EKFZ along the parallel direction in Figure 9. The blue dots
represent InSAR observations, the red line segments represent the best-fit values, the black vertical
lines represent the location of the EKF (same as in Figure 5), and the gray areas represent topographic
information (same as in Figure 5). The best fitting parameters are marked in the lower left corner of
(a–g). V represents the modeled slip rate at depth (mm/year), D represents locking depth (km), and
X represents the distance from fault location (km).

6. Conclusions

In this study, InSAR technology was used to obtain the InSAR interseismic deformation
field of the XDS of the EKFZ based on the Sentinel-1 SAR data of the ascending and
descending orbits, and the deformations were in good agreement with the GPS observations.
Based on these constraints, the slip rate and locking depth of the region were derived by
combining the triangular dislocation model and the spiral dislocation theoretical model,
and the seismic potential of the XDS of the EKFZ was estimated.

The following conclusions could be drawn from this study: (1) The LOS deformation
field of the XDS of the EKFZ was obtained by using Sentinel-1 data of ascending and
descending orbits, which indicated that the XDS of the EKFZ is dominated by horizontal
movement. Combined with the interference results, it is shown that the strike-slip rate
dominates the deformation information of the XDS of the EKFZ. The deep strike-slip rate
of the fault is about 6 mm/yr, the deep dip-slip rate is about 2 mm/yr, and the slip-deficit
rate on the fault surface is about 6 mm/yr; (2) Combined with the spiral dislocation theory
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model, the slip rate of the XDS to Xiugou Basin of the EKFZ has a gradually increasing
trend, with an average slip rate of 9.6 ± 2.3 mm/yr and a locking depth of 29 ± 5 m;
(3) The stress accumulation is about 483 ± 92 years in the XDS of EKFZ and indicates
that the cumulative elastic strain energy of the XDS of the EKFZ can produce an MW
7.29 ± 0.1 earthquake in the future, which needs special attention.
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