Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = slag trench ratio

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 12220 KiB  
Article
Investigation on the Properties of Alkali-Activated Industrial Solid Waste and Excavated-Soil-Based Controlled Low-Strength Materials
by Chen Xu, Xiaolei Wang, Libo Liu and Yancang Li
Materials 2025, 18(11), 2474; https://doi.org/10.3390/ma18112474 - 25 May 2025
Viewed by 480
Abstract
This study aims to address the challenge of backfill compaction in the confined spaces of municipal utility tunnel trenches and to develop an environmentally friendly, zero-cement-based backfill material. The research focuses on the excavation slag soil from a utility tunnel project in Handan. [...] Read more.
This study aims to address the challenge of backfill compaction in the confined spaces of municipal utility tunnel trenches and to develop an environmentally friendly, zero-cement-based backfill material. The research focuses on the excavation slag soil from a utility tunnel project in Handan. An alkali-activated industrial-solid-waste-excavated slag-soil-based controllable low-strength material (CLSM) was developed, using NaOH as the activator, a slag–fly ash composite system as the binder, and steel slag-excavated slag as the fine aggregate. The effects of the water-to-solid ratio (0.40–0.45) and the binder-to-sand ratio (0.20–0.40) on CLSM fluidity were studied to determine optimal values for these parameters. Additionally, the influence of excavated soil content (45–65%), slag content (30–70%), and NaOH content (1–5%) on fluidity (flowability and bleeding rate) and mechanical properties (3-day, 7-day, and 28-day unconfined compressive strength (UCS)) was investigated. The results showed that when the water-to-solid ratio is 0.445 and the binder-to-sand ratio is 0.30, the material meets both experimental and practical requirements. CLSM fluidity was mainly influenced by the excavated soil and slag contents, while NaOH content had minimal effect. The unconfined compressive strength at different curing ages was negatively correlated with the excavated soil content, while it was positively correlated with slag and NaOH content. Based on these findings, the preparation of “zero-cement” CLSM using industrial solid waste and excavation slag is feasible. For trench backfill projects, a mix of 50–60% excavated soil, 40–60% slag, and 3–5% NaOH is recommended for optimal engineering performance. CLSM is a new type of green backfill material that uses excavated soil and industrial solid waste to prepare alkali-activated materials. It can effectively increase the amount of excavated soil and alleviate energy consumption. This is conducive to the reuse of resources, environmental protection, and sustainable development. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

11 pages, 2173 KiB  
Article
Investigation and Minimization of Slag Spot Surface Defects in Continuous Casting of High Carbon Steel Billets through Statistical Evaluation
by Yong-feng Chen, Li Zhao, Xiao-tan Zuo, Qun-nan Tao, Hong-biao Zhang, Hai Li, Qiang-qiang Wang and Sheng-ping He
Metals 2020, 10(7), 878; https://doi.org/10.3390/met10070878 - 1 Jul 2020
Cited by 1 | Viewed by 6251
Abstract
Slag spot surface defects often appear during continuous casting of high carbon steel billets due to the solidification characteristics of molten steel in the mold. To target the problem of surface slag spot defects that occur frequently during the continuous casting of high-carbon [...] Read more.
Slag spot surface defects often appear during continuous casting of high carbon steel billets due to the solidification characteristics of molten steel in the mold. To target the problem of surface slag spot defects that occur frequently during the continuous casting of high-carbon steel strands, we analyzed the influence of molten steel superheat, accumulated service time and the water inlet temperature of the mold, the size of the submerged entry nozzle and the physical and chemical properties of the mold powder on the slag spot defects. The production practice shows that by adjusting the superheat of molten steel to 30–35 °C, the water inlet temperature of the mold is stable at 33–35 °C. To adjust the internal and external diameter of the immersion nozzle to 30–70 mm, the viscosity and melting temperature of the mold powder were adjusted from 0.45–0.55 Pa·s, 1100–1140 °C to 0.15–0.25 Pa·s, 1020–1060 °C. The final billet surface quality was improved significantly, the billet surface was smooth, the oscillation marks were relatively smooth and regular and the slag trench ratio was reduced from the original maximum of 40–50% to less than 1%. Full article
(This article belongs to the Special Issue Mold and Tundish Metallurgy)
Show Figures

Figure 1

Back to TopTop