Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = sintered metal wire mesh

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 46311 KiB  
Article
Study on the Particle Deposition Characteristics of Transpiration Cooling Structures with Sintered Wire Mesh
by Zhe Zhang, Xiang Luo and Yubo Peng
Micromachines 2024, 15(4), 452; https://doi.org/10.3390/mi15040452 - 28 Mar 2024
Cited by 1 | Viewed by 1536
Abstract
Transpiration cooling based on a porous structure has an ultra-high cooling efficiency, which is expected to be one solution to improve the cooling technology of aero-engine turbine blades. However, particulate impurities in the gas flow channel continue to deposit on the surface of [...] Read more.
Transpiration cooling based on a porous structure has an ultra-high cooling efficiency, which is expected to be one solution to improve the cooling technology of aero-engine turbine blades. However, particulate impurities in the gas flow channel continue to deposit on the surface of turbine components, blocking cooling holes, which causes great harm to the cooling of turbine blades. In this study, a sintered metal mesh plate was selected as the transpiration cooling structure, and the evolution of particle deposition quality and deposition thickness on the transpiration cooling surface with time, as well as spatial distributions of particle deposition thickness at different times, were explored through experimental and simulation methods. The results showed that, with the increase in spray time, deposition quality and maximum deposition thickness of the transpiration cooling surface gradually increased. Along the main-stream direction, when spray time was short, deposition thickness was higher in a narrow range upstream of the experimental specimen. With the increase in spray time, deposition thickness gradually decreased along the direction of the transpiration cooling mainstream. In the spanwise direction, when spray time was very short, deposition thickness in the spanwise direction was more consistent and, after spray time increased further, the deposition thickness distribution began to tend to a “∩”-type distribution. It can be seen from the simulation results of the metal wire mesh particle deposition that particles were easily deposited on the windward side of the metal wire in the main-stream direction, which agreed with the experimental distribution characteristics of the metal wire mesh deposition. Moreover, the increase in blowing ratio reduced the deposition of particles on the wall of the metal wire mesh. Full article
Show Figures

Figure 1

11 pages, 848 KiB  
Article
Experimental Investigation on the Transpiration Cooling Characteristics of Sintered Wire Mesh in Plain Weave
by Yubo Peng, Guoqiang Xu, Xiang Luo, Jian He and Dongdong Liu
Micromachines 2022, 13(3), 450; https://doi.org/10.3390/mi13030450 - 16 Mar 2022
Cited by 8 | Viewed by 2456
Abstract
We experimentally investigate the transpiration cooling characteristics of a porous material, sintered wire mesh. Three samples with different porosities in a plain weave structure are tested with various blowing ratios in an open-loop wind tunnel with a heated mainstream flow. The temperature on [...] Read more.
We experimentally investigate the transpiration cooling characteristics of a porous material, sintered wire mesh. Three samples with different porosities in a plain weave structure are tested with various blowing ratios in an open-loop wind tunnel with a heated mainstream flow. The temperature on the surface of the porous material is measured by an infrared camera to obtain the cooling efficiency. The measurements reveal nonuniform distributions of the surface temperature and the cooling efficiency in both the flow direction and the transverse direction. The averaged cooling efficiency on the surface first decreases and then increases with the blowing ratio, but increases and then decreases with the porosity of the material. The internal cooling by forced convection and its combination with the external film cooling from the transpiration cooling are considered to be attributed to those two cooling characteristics, respectively. Finally, we propose a modified blowing ratio to collapse the minima of the blowing ratio for all tested samples, providing an universal transition for the decreasing and increasing branches for all tested samples in the relation between averaged cooling efficiency and blowing ratio. Full article
(This article belongs to the Special Issue Heat and Mass Transfer in Microchannels)
Show Figures

Figure 1

15 pages, 5552 KiB  
Article
Preparation and Tensile Properties of Novel Porous Plates Made by Stainless Steel Wire Mesh and Powder Composites
by Shengcun Lin and Zhaoyao Zhou
Materials 2021, 14(3), 677; https://doi.org/10.3390/ma14030677 - 1 Feb 2021
Cited by 4 | Viewed by 2809
Abstract
Porous metal materials have important mechanical properties, and there are various manufacturing methods to produce them. In this paper, a porous, thin strip was fabricated by the composite rolling of stainless steel wire mesh and stainless steel powder. Then, a porous plate of [...] Read more.
Porous metal materials have important mechanical properties, and there are various manufacturing methods to produce them. In this paper, a porous, thin strip was fabricated by the composite rolling of stainless steel wire mesh and stainless steel powder. Then, a porous plate of stainless steel wire mesh and powder composite (SWMPC) was prepared by folding, pressing, and vacuum sintering the thin strip, and its structural characteristics and permeability were studied. The effects of the gap of the roller, gap of the powder box, number of layers by folding, and sintering parameters on the porosity and mechanical properties were also studied. The results indicated that the permeability increased with the increasing of porosity. Sintering parameters had a great influence on the mechanical properties. The larger the roll gap, the higher the porosity and the weaker the mechanical properties. As the gap of the powder box increased, the porosity decreased and the mechanical properties improved. The number of layers had no effect on the porosity. The first three stages of tensile curves of 10 and 15 layers were deformation stages and generally coincided, the time was short at the fracture stage. However, the mechanical properties got a raise when layers was 15. Full article
Show Figures

Figure 1

12 pages, 4647 KiB  
Article
Fabrication, Structural Characterization and Uniaxial Tensile Properties of Novel Sintered Multi-Layer Wire Mesh Porous Plates
by Liuyang Duan, Zhaoyao Zhou and Bibo Yao
Materials 2018, 11(1), 156; https://doi.org/10.3390/ma11010156 - 17 Jan 2018
Cited by 12 | Viewed by 5461
Abstract
There is an increasing interest in developing porous metals or metallic foams for functional and structural applications. The study of the physical and mechanical properties of porous metals is very important and helpful for their application. In this paper, a novel sintered multilayer [...] Read more.
There is an increasing interest in developing porous metals or metallic foams for functional and structural applications. The study of the physical and mechanical properties of porous metals is very important and helpful for their application. In this paper, a novel sintered multilayer wire mesh porous plate material (WMPPs) with a thickness of 0.5 mm–3 mm and a porosity of 10–35% was prepared by winding, pressing, rolling, and subsequently vacuum sintering them. The pore size and total size distribution in the as-prepared samples were investigated using the bubble point method. The uniaxial tensile behavior of the WMPPs was investigated in terms of the sintering temperature, porosity, wire diameter, and manufacturing technology. The deformation process and the failure mechanism under the tensile press was also discussed based on the appearance of the fractures (SEM figures). The results indicated that the pore size and total size distribution were closely related to the raw material used and the sintering temperature. For the WMPPs prepared by the wire mesh, the pore structures were inerratic and the vast majority of pore size was less than 10 μm. On the other hand, for the WMPPs that were prepared by wire mesh and powder, the pore structures were irregular and the pore size ranged from 0 μm–50 μm. The experimental data showed that the tensile strength of WMPPs is much higher than any other porous metals or metallic foams. Higher sintering temperatures led to coarser joints between wires and resulted in higher tensile strength. The sintering temperature decreased from 1330 °C to 1130 °C and the tensile strength decreased from 296 MPa to 164 MPa. Lower porosity means that there are more metallurgical joints and metallic frameworks resisting deformation per unit volume. Therefore, lower porosities exhibit higher tensile strength. An increase of porosity from 17.14% to 32.5% led to the decrease of the tensile strength by 90 MPa. The coarser wires led to a bigger contact area between the interconnecting wires, resulting in a stronger sintering neck that exhibited higher tensile strength. The wire diameter increased from 81 μm to 122 μm and the tensile strength increased from 296 MPa to 362 MPa. The fracture morphology showed that the wires experience necking deformation and ductile fracture. Full article
(This article belongs to the Section Porous Materials)
Show Figures

Figure 1

Back to TopTop