Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = single-step biosensing platform

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1426 KiB  
Article
Low-Cost Wireless Device for DNA Sensing Using Square Wave Voltammetry
by Antonio Lazaro, Ramon Villarino, David Girbau, Hedieh Haji-Hashemi and Beatriz Prieto-Simon
Chemosensors 2025, 13(4), 119; https://doi.org/10.3390/chemosensors13040119 - 1 Apr 2025
Viewed by 658
Abstract
This paper presents a low-cost wireless prototype designed for point-of-care DNA sensing based on square wave voltammetry (SWV) measurements. Unlike other designs found in the literature, this prototype employs dedicated ADC and DAC components to reduce noise and allows for lower voltage steps [...] Read more.
This paper presents a low-cost wireless prototype designed for point-of-care DNA sensing based on square wave voltammetry (SWV) measurements. Unlike other designs found in the literature, this prototype employs dedicated ADC and DAC components to reduce noise and allows for lower voltage steps in SWV scans. On-board signal processing makes the device suitable for use by inexperienced end-users. The prototype transmits data via Bluetooth Low-Energy (BLE) to a mobile app, which records the measurements on a cloud platform. The prototype was employed to detect a 23-base single-stranded DNA (ssDNA) sequence, within the range of 1 nM to 10 nM. The results obtained with the prototype showed good agreement when compared to a commercial electrochemical analyzer. This study demonstrates the feasibility of using such a device for DNA sensing, highlighting its potential for broader biosensing applications. Full article
(This article belongs to the Special Issue Electrochemical Sensing in Medical Diagnosis)
Show Figures

Figure 1

16 pages, 2895 KiB  
Article
Dynamic Measurement of a Cancer Biomarker: Towards In Situ Application of a Fiber-Optic Ball Resonator Biosensor in CD44 Protein Detection
by Zhuldyz Myrkhiyeva, Kanagat Kantoreyeva, Aliya Bekmurzayeva, Anthony W. Gomez, Zhannat Ashikbayeva, Meruyert Tilegen, Tri T. Pham and Daniele Tosi
Sensors 2024, 24(6), 1991; https://doi.org/10.3390/s24061991 - 21 Mar 2024
Cited by 5 | Viewed by 2192
Abstract
The accuracy and efficacy of medical treatment would be greatly improved by the continuous and real-time monitoring of protein biomarkers. Identification of cancer biomarkers in patients with solid malignant tumors is receiving increasing attention. Existing techniques for detecting cancer proteins, such as the [...] Read more.
The accuracy and efficacy of medical treatment would be greatly improved by the continuous and real-time monitoring of protein biomarkers. Identification of cancer biomarkers in patients with solid malignant tumors is receiving increasing attention. Existing techniques for detecting cancer proteins, such as the enzyme-linked immunosorbent assay, require a lot of work, are not multiplexed, and only allow for single-time point observations. In order to get one step closer to clinical usage, a dynamic platform for biosensing the cancer biomarker CD44 using a single-mode optical fiber-based ball resonator biosensor was designed, constructed and evaluated in this work. The main novelty of the work is an in-depth study of the capability of an in-house fabricated optical fiber biosensor for in situ detection of a cancer biomarker (CD44 protein) by conducting several types of experiments. The main results of the work are as follows: (1) Calibration of the fabricated fiber-optic ball resonator sensors in both static and dynamic conditions showed similar sensitivity to the refractive index change demonstrating its usefulness as a biosensing platform for dynamic measurements; (2) The fabricated sensors were shown to be insensitive to pressure changes further confirming their utility as an in situ sensor; (3) The sensor’s packaging and placement were optimized to create a better environment for the fabricated ball resonator’s performance in blood-mimicking environment; (4) Incubating increasing protein concentrations with antibody-functionalized sensor resulted in nearly instantaneous signal change indicating a femtomolar detection limit in a dynamic range from 7.1 aM to 16.7 nM; (5) The consistency of the obtained signal change was confirmed by repeatability studies; (6) Specificity experiments conducted under dynamic conditions demonstrated that the biosensors are highly selective to the targeted protein; (7) Surface morphology studies by AFM measurements further confirm the biosensor’s exceptional sensitivity by revealing a considerable shift in height but no change in surface roughness after detection. The biosensor’s ability to analyze clinically relevant proteins in real time with high sensitivity offers an advancement in the detection and monitoring of malignant tumors, hence improving patient diagnosis and health status surveillance. Full article
Show Figures

Figure 1

14 pages, 3326 KiB  
Article
A One-Pot Convenient RPA-CRISPR-Based Assay for Salmonella enterica Serovar Indiana Detection
by Jiansen Gong, Di Zhang, Lixia Fu, Yongyi Dong, Kun Wu, Xinhong Dou and Chengming Wang
Microorganisms 2024, 12(3), 519; https://doi.org/10.3390/microorganisms12030519 - 5 Mar 2024
Cited by 4 | Viewed by 2755
Abstract
Salmonella enterica serovar Indiana (S. Indiana) is among the most prevalent serovars of Salmonella and is closely associated with foodborne diseases worldwide. In this study, we combined a recombinase polymerase amplification (RPA) technique with clustered regularly interspaced short palindromic repeat (CRISPR) and [...] Read more.
Salmonella enterica serovar Indiana (S. Indiana) is among the most prevalent serovars of Salmonella and is closely associated with foodborne diseases worldwide. In this study, we combined a recombinase polymerase amplification (RPA) technique with clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated (Cas) protein Cas12b (CRISPR/Cas12b)-based biosensing in a one-pot platform to develop a novel one-step identification method for S. Indiana infection diagnosis. The entire RPA-CRISPR/Cas12b reaction can be completed at 41 °C within 1 h without the need for specific instruments. The optimal concentrations of Cas12b and single-guide RNA (sgRNA) for the reaction were the same at 250 nM. The single-stranded DNA (ssDNA) reporter 8C-FQ (5′-/6-FAM/CCCCCCCC/BHQ1/-3′) presented the best performance in the reaction compared with the other reporters. The limit of detection (LoD) of the RPA-CRISPR/Cas12b assay was 14.4 copies per reaction. As for specificity, we successfully identified four S. Indiana strains among twenty-two Salmonella strains without any false-positive results, presenting 100% accuracy for S. Indiana, and no cross-reactions were observed in eight other pathogens. Moreover, a total of 109 chicken carcasses were classified by the S. Indiana RPA-CRISPR assay and PCR methods from three processing points, including 43 post-shedding, 35 post-evisceration, and 31 post-chilling. There were 17 S. Indiana-positive samples identified during the whole processing step, consisting of nine post-shedding, five post-evisceration, and three post-chilling. The corresponding S. Indiana-positive rates of post-shedding, post-evisceration, and post-chilling were 20.93% (9/43), 14.29% (5/35), and 9.68% (3/31), respectively. Results from the S. Indiana one-step RPA-CRISPR/Cas12b assay were totally in agreement with those obtained using a traditional culture method, demonstrating 100% agreement with no false-positive or false-negative results observed. Altogether, the RPA-CRISPR/Cas12b assay developed in this study represents a promising, accurate, and simple diagnostic tool for S. Indiana detection. Full article
(This article belongs to the Special Issue CRISPR-Based Diagnostics for Detection of Microorganisms and Beyond)
Show Figures

Figure 1

17 pages, 2870 KiB  
Article
Continuous Real-Time Detection of Serotonin Using an Aptamer-Based Electrochemical Biosensor
by Habib M. N. Ahmad, Arturo Andrade and Edward Song
Biosensors 2023, 13(11), 983; https://doi.org/10.3390/bios13110983 - 13 Nov 2023
Cited by 12 | Viewed by 4784
Abstract
Serotonin (5-HT) is a critical neurotransmitter involved in many neuronal functions, and 5-HT depletion has been linked to several mental diseases. The fast release and clearance of serotonin in the extracellular space, low analyte concentrations, and a multitude of interfering species make the [...] Read more.
Serotonin (5-HT) is a critical neurotransmitter involved in many neuronal functions, and 5-HT depletion has been linked to several mental diseases. The fast release and clearance of serotonin in the extracellular space, low analyte concentrations, and a multitude of interfering species make the detection of serotonin challenging. This work presents an electrochemical aptamer-based biosensing platform that can monitor 5-HT continuously with high sensitivity and selectivity. Our electrochemical sensor showed a response time of approximately 1 min to a step change in the serotonin concentration in continuous monitoring using a single-frequency EIS (electrochemical impedance spectroscopy) technique. The developed sensing platform was able to detect 5-HT in the range of 25–150 nM in the continuous sample fluid flow with a detection limit (LOD) of 5.6 nM. The electrochemical sensor showed promising selectivity against other species with similar chemical structures and redox potentials, including dopamine (DA), norepinephrine (NE), L-tryptophan (L-TP), 5-hydroxyindoleacetic acid (5-HIAA), and 5-hydroxytryptophan (5-HTP). The proposed sensing platform is able to achieve high selectivity in the nanomolar range continuously in real-time, demonstrating the potential for monitoring serotonin from neurons in organ-on-a-chip or brain-on-a-chip-based platforms. Full article
(This article belongs to the Section Biosensors and Healthcare)
Show Figures

Figure 1

6 pages, 739 KiB  
Proceeding Paper
One-Step Synthesis of Robust 2D Ti3C2-MXene/AuNPs Nanocomposite by Electrostatic Self-Assembly for (Bio)Sensing
by Ayesha Zaheer, Tina D’Aponte, Zaheer Ud Din Babar, Raffaele Velotta, Bartolomeo Della Ventura and Vincenzo Iannotti
Eng. Proc. 2023, 56(1), 227; https://doi.org/10.3390/ASEC2023-15227 - 26 Oct 2023
Cited by 3 | Viewed by 1628
Abstract
In this study, we present a single-step approach for the synthesis of Ti3C2 MXene and gold nanoparticle (AuNP) composites via electrostatic self-assembly. The surface of the AuNPs was modified to induce a positive charge using cetyltrimethylammonium bromide (CTAB), which enabled [...] Read more.
In this study, we present a single-step approach for the synthesis of Ti3C2 MXene and gold nanoparticle (AuNP) composites via electrostatic self-assembly. The surface of the AuNPs was modified to induce a positive charge using cetyltrimethylammonium bromide (CTAB), which enabled effective electrostatic interactions with negatively charged MXene sheets. The successful synthesis of the MX-AuNP composite was confirmed using UV–Visible spectroscopy (UV–Vis), dynamic light scattering (DLS), and scanning electron microscopy (SEM). In conclusion, our single-step synthesis method offers a sustainable platform for producing MXene-AuNP composites with enhanced properties. This approach can be extended to other metal nanoparticles and holds great promise for a wide range of applications, particularly in biosensing and nanomaterial-based technologies. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

70 pages, 21000 KiB  
Review
Acoustic Biosensors and Microfluidic Devices in the Decennium: Principles and Applications
by Minu Prabhachandran Nair, Adrian J. T. Teo and King Ho Holden Li
Micromachines 2022, 13(1), 24; https://doi.org/10.3390/mi13010024 - 26 Dec 2021
Cited by 35 | Viewed by 7822
Abstract
Lab-on-a-chip (LOC) technology has gained primary attention in the past decade, where label-free biosensors and microfluidic actuation platforms are integrated to realize such LOC devices. Among the multitude of technologies that enables the successful integration of these two features, the piezoelectric acoustic wave [...] Read more.
Lab-on-a-chip (LOC) technology has gained primary attention in the past decade, where label-free biosensors and microfluidic actuation platforms are integrated to realize such LOC devices. Among the multitude of technologies that enables the successful integration of these two features, the piezoelectric acoustic wave method is best suited for handling biological samples due to biocompatibility, label-free and non-invasive properties. In this review paper, we present a study on the use of acoustic waves generated by piezoelectric materials in the area of label-free biosensors and microfluidic actuation towards the realization of LOC and POC devices. The categorization of acoustic wave technology into the bulk acoustic wave and surface acoustic wave has been considered with the inclusion of biological sample sensing and manipulation applications. This paper presents an approach with a comprehensive study on the fundamental operating principles of acoustic waves in biosensing and microfluidic actuation, acoustic wave modes suitable for sensing and actuation, piezoelectric materials used for acoustic wave generation, fabrication methods, and challenges in the use of acoustic wave modes in biosensing. Recent developments in the past decade, in various sensing potentialities of acoustic waves in a myriad of applications, including sensing of proteins, disease biomarkers, DNA, pathogenic microorganisms, acoustofluidic manipulation, and the sorting of biological samples such as cells, have been given primary focus. An insight into the future perspectives of real-time, label-free, and portable LOC devices utilizing acoustic waves is also presented. The developments in the field of thin-film piezoelectric materials, with the possibility of integrating sensing and actuation on a single platform utilizing the reversible property of smart piezoelectric materials, provide a step forward in the realization of monolithic integrated LOC and POC devices. Finally, the present paper highlights the key benefits and challenges in terms of commercialization, in the field of acoustic wave-based biosensors and actuation platforms. Full article
Show Figures

Figure 1

6 pages, 692 KiB  
Proceeding Paper
Quenching of Fluorescence Caused by Graphene Oxide as an Immunosensing Platform in a Microwell Plate Format
by Edwin J. Ortiz-Riaño, Mariana D. Avila-Huerta, Diana L. Mancera-Zapata and Eden Morales-Narváez
Proceedings 2020, 60(1), 60; https://doi.org/10.3390/IECB2020-07017 - 2 Nov 2020
Viewed by 1468
Abstract
Immunoassays are, at present, an important tool for diagnostics, drug development, and environmental monitoring. However, most immunoassays involve procedures that require many elements for their development. We introduce a novel biosensing platform based on fluorescence quenching caused by graphene oxide (GO) for the [...] Read more.
Immunoassays are, at present, an important tool for diagnostics, drug development, and environmental monitoring. However, most immunoassays involve procedures that require many elements for their development. We introduce a novel biosensing platform based on fluorescence quenching caused by graphene oxide (GO) for the detection of Human-IgG and Prostate-Specific Antigen (PSA). We employ a single antibody for the capture and detection processes, avoiding washing steps. FITC fluorophore was conjugated with antibodies for H-IgG detection, whereas quantum dots were conjugated with antibodies for PSA detection. The simple biosensing platform consists of covering a 96-well microplate (with a polystyrene bottom) with GO. The graphene oxide adhesion is possible by way of electrostatic interactions between the plate surface modified with amino groups (positively charged) and the graphene oxide (negatively charged). This proposal showed an excellent response for the detection of Human-IgG, with acceptable precision (from 0.27% to 5%). The limit of detection reached for H-IgG was 3.35 ng mL-1. In the same manner, for PSA detection, the limit of detection reached was 0.02 ng mL-1 and the precision range was from 0.7% to 15.2%. Furthermore, this biosensing platform was demonstrated to operate with real samples of human urine doped with different concentrations of prostate-specific antigen. Full article
(This article belongs to the Proceedings of The 1st International Electronic Conference on Biosensors)
Show Figures

Figure 1

8 pages, 1175 KiB  
Proceeding Paper
Real-Time Pathogen Determination by Optical Biosensing Based on Graphene Oxide
by Mariana D. Avila-Huerta, Edwin J. Ortiz-Riaño, Diana L. Mancera-Zapata and Eden Morales-Narváez
Proceedings 2020, 60(1), 59; https://doi.org/10.3390/IECB2020-07016 - 2 Nov 2020
Viewed by 1361
Abstract
Pathogenic bacterial contamination in food is a public health concern. It represents a health and safety consumer risk that could cause several diseases and even death. Currently, the food industry uses culture-based assays to determine the presence of pathogens as a gold standard [...] Read more.
Pathogenic bacterial contamination in food is a public health concern. It represents a health and safety consumer risk that could cause several diseases and even death. Currently, the food industry uses culture-based assays to determine the presence of pathogens as a gold standard method. Although this method is highly accurate, it is often time-consuming and expensive. In this regard, the development of biosensing platforms results as an alternative for the reduction of time and cost of pathogenic bacteria detection in food. In this work, we report the development of a single-step bacterial detection platform based on graphene oxide. Non-radiative energy transfer between graphene oxide coated microplates (GOMs) and photoluminescence bioprobes (PLBs) is presented in absence of the target analyte, but in presence of analyte, PLBs exhibit strong photoluminescence due to the distance between GOMs and PLBs. These PLBs are based on quantum dot (Qds)-antibody (Ab) complexes, thereby resulting as a biorecognition and interrogation element. Escherichia coli was used as model analyte. In optimal conditions, the bacterial detection platform reached a limit of detection around 2 CFU mL−1 in 30 min, enabling a fast and sensitive alternative for bacterial detection. The biosensing platform was also used to test food industry samples achieving a qualitative response, that allows determining the presence of E. coli during the first 30 min of the assay. This biosensing strategy potentially offers a low-cost and quick option for the food industry to assure the quality of the product and consumer safety. Full article
(This article belongs to the Proceedings of The 1st International Electronic Conference on Biosensors)
Show Figures

Figure 1

13 pages, 1713 KiB  
Article
A Conductometric Indium Oxide Semiconducting Nanoparticle Enzymatic Biosensor Array
by Dongjin Lee, Janet Ondrake and Tianhong Cui
Sensors 2011, 11(10), 9300-9312; https://doi.org/10.3390/s111009300 - 28 Sep 2011
Cited by 18 | Viewed by 9414
Abstract
We report a conductometric nanoparticle biosensor array to address the significant variation of electrical property in nanomaterial biosensors due to the random network nature of nanoparticle thin-film. Indium oxide and silica nanoparticles (SNP) are assembled selectively on the multi-site channel area of the [...] Read more.
We report a conductometric nanoparticle biosensor array to address the significant variation of electrical property in nanomaterial biosensors due to the random network nature of nanoparticle thin-film. Indium oxide and silica nanoparticles (SNP) are assembled selectively on the multi-site channel area of the resistors using layer-by-layer self-assembly. To demonstrate enzymatic biosensing capability, glucose oxidase is immobilized on the SNP layer for glucose detection. The packaged sensor chip onto a ceramic pin grid array is tested using syringe pump driven feed and multi-channel I–V measurement system. It is successfully demonstrated that glucose is detected in many different sensing sites within a chip, leading to concentration dependent currents. The sensitivity has been found to be dependent on the channel length of the resistor, 4–12 nA/mM for channel lengths of 5–20 µm, while the apparent Michaelis-Menten constant is 20 mM. By using sensor array, analytical data could be obtained with a single step of sample solution feeding. This work sheds light on the applicability of the developed nanoparticle microsensor array to multi-analyte sensors, novel bioassay platforms, and sensing components in a lab-on-a-chip. Full article
(This article belongs to the Special Issue Nano-Biosensors)
Show Figures

Back to TopTop