Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = single-phase transformerless (S-PT) PV inverter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 9371 KiB  
Article
Single-Phase Transformerless Three-Level PV Inverter in CHB Configuration
by Wojciech Kołodziejski, Jacek Jasielski, Witold Machowski, Juliusz Godek and Grzegorz Szerszeń
Electronics 2025, 14(2), 364; https://doi.org/10.3390/electronics14020364 - 17 Jan 2025
Cited by 1 | Viewed by 1123
Abstract
The paper proposes an original single-phase transformerless three-level (S-PT) photovoltaic (PV) inverter in the cascade H bridge (CHB) configuration. The DC-link voltage of the inverter is created by two serial voltage sources with a voltage twice as low as the DC-link voltage. An [...] Read more.
The paper proposes an original single-phase transformerless three-level (S-PT) photovoltaic (PV) inverter in the cascade H bridge (CHB) configuration. The DC-link voltage of the inverter is created by two serial voltage sources with a voltage twice as low as the DC-link voltage. An appropriate VCC DC-link voltage is generated by a two-phase DC-DC boost converter, fed from the string panel output at a level determined by the maximum power point tracking (MPPT) algorithm. Two symmetrical sources with VCC/2 are formed by a divider of two series-connected capacitors of large and the same capacitance. The common mode (CM) voltage of the proposed inverter is constant, and the voltage stresses across all switches, diodes and gate drive circuits are half of the DC-link voltage. The principles of operation of the S-PT inverter, an implementation of a complete gate control system with galvanic isolation for all IGBTs, are also presented. The proposed inverter topologies have been implemented using high-speed IGBTs and simulated in PSPICE, as well as being experimentally validated. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

Back to TopTop