Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = single-particle aerosol mass spectrometry (SPAMS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2208 KB  
Article
The Significant Impact of Biomass Burning Emitted Particles on Typical Haze Pollution in Changsha, China
by Qu Xiao, Hui Guo, Jie Tan, Zaihua Wang, Yuzhu Xie, Honghong Jin, Mengrong Yang, Xinning Wang, Chunlei Cheng, Bo Huang and Mei Li
Toxics 2025, 13(8), 691; https://doi.org/10.3390/toxics13080691 - 20 Aug 2025
Viewed by 963
Abstract
In this study, typical haze pollution influenced by biomass burning (BB) activities in Changsha in the autumn of 2024 was investigated through the mixing state and evolution process of BB particles via the real-time measurement of single-particle aerosol mass spectrometry (SPAMS). From the [...] Read more.
In this study, typical haze pollution influenced by biomass burning (BB) activities in Changsha in the autumn of 2024 was investigated through the mixing state and evolution process of BB particles via the real-time measurement of single-particle aerosol mass spectrometry (SPAMS). From the clean period to the haze period, the PM2.5 concentration increased from 25 μg·m−3 at 12:00 to 273 μg·m−3 at 21:00 on 12 October, and the proportion of total BB single particles in the total detected particles increased from 17.2% to 54%. This indicates that the rapid increase in PM2.5 concentration was accompanied by a concurrent increase in the contribution of particles originating from BB sources. The detected BB particles were classified into two types based on their mixing states and temporal variations: BB1 and BB2, which accounted for 71.7% and 28.3% of the total BB particles, respectively. The analysis of backward trajectories and fire spots suggested that BB1 particles originated from straw burning emissions at northern Changsha, while BB2 particles were primarily related to local nighttime cooking emissions in Changsha. In addition, a special type of K-containing single particles without K cluster ions was found closely associated with BB1 type particles, which were designated as secondarily processed BB particles (BB-sec). The BB-sec particles contained abundant sulfate and ammonium signals and showed lagged appearance after the peak of BB1-type particles, which was possibly due to the aging and formation of ammonium sulfate on the freshly emitted particles. In all, this study provides insights into understanding the substantial impact of BB sources on regional air quality during the crop harvest season and the appropriate disposal of crop straw, including conversion into high-efficiency fuel through secondary processing or clean energy via biological fermentation, which is of great significance for the mitigation of local haze pollution. Full article
Show Figures

Graphical abstract

20 pages, 11386 KB  
Article
Real-Time Source Dynamics of PM2.5 During Winter Haze Episodes Resolved by SPAMS: A Case Study in Yinchuan, Northwest China
by Huihui Du, Tantan Tan, Jiaying Pan, Meng Xu, Aidong Liu and Yanpeng Li
Sustainability 2025, 17(14), 6627; https://doi.org/10.3390/su17146627 - 20 Jul 2025
Cited by 1 | Viewed by 1237
Abstract
The occurrence of haze pollution significantly deteriorates air quality and threatens human health, yet persistent knowledge gaps in real-time source apportionment of fine particulate matter (PM2.5) hinder sustained improvements in atmospheric pollution conditions. Thus, this study employed single-particle aerosol mass spectrometry [...] Read more.
The occurrence of haze pollution significantly deteriorates air quality and threatens human health, yet persistent knowledge gaps in real-time source apportionment of fine particulate matter (PM2.5) hinder sustained improvements in atmospheric pollution conditions. Thus, this study employed single-particle aerosol mass spectrometry (SPAMS) to investigate PM2.5 sources and dynamics during winter haze episodes in Yinchuan, Northwest China. Results showed that the average PM2.5 concentration was 57 μg·m−3, peaking at 218 μg·m−3. PM2.5 was dominated by organic carbon (OC, 17.3%), mixed carbonaceous particles (ECOC, 17.0%), and elemental carbon (EC, 14.3%). The primary sources were coal combustion (26.4%), fugitive dust (25.8%), and vehicle emissions (19.1%). Residential coal burning dominated coal emissions (80.9%), highlighting inefficient decentralized heating. Source contributions showed distinct diurnal patterns: coal combustion peaked nocturnally (29.3% at 09:00) due to heating and inversions, fugitive dust rose at night (28.6% at 19:00) from construction and low winds, and vehicle emissions aligned with traffic (17.5% at 07:00). Haze episodes were driven by synergistic increases in local coal (+4.0%), dust (+2.7%), and vehicle (+2.1%) emissions, compounded by regional transport (10.1–36.7%) of aged particles from northwestern zones. Fugitive dust correlated with sulfur dioxide (SO2) and ozone (O3) (p < 0.01), suggesting roles as carriers and reactive interfaces. Findings confirm local emission dominance with spatiotemporal heterogeneity and regional transport influence. SPAMS effectively resolved short-term pollution dynamics, providing critical insights for targeted air quality management in arid regions. Full article
Show Figures

Figure 1

Back to TopTop