Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = silicotungstic acid salts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2872 KiB  
Article
Silicotungstate- or Phosphotungstate-Catalyzed Glycerol Esterification with Acetic Acid: A Comparison of Zinc and Tin Salts
by Marcio Jose da Silva, Cesar Macedo Oliveira, Pedro Henrique da Silva Andrade and Neide Paloma Gonçalves Lopes
Reactions 2025, 6(1), 19; https://doi.org/10.3390/reactions6010019 - 7 Mar 2025
Viewed by 890
Abstract
In this work, tin and zinc salts of silicotungstic and phosphotungstic acids were synthesized, characterized, and tested as catalysts for esterification reactions of glycerol with acetic acid (HOAc) to produce glycerol esters such as monoacetyl glycerol (MAG), which are used as additives in [...] Read more.
In this work, tin and zinc salts of silicotungstic and phosphotungstic acids were synthesized, characterized, and tested as catalysts for esterification reactions of glycerol with acetic acid (HOAc) to produce glycerol esters such as monoacetyl glycerol (MAG), which are used as additives in the pharmaceutical and food industries and in the manufacturing of explosives, or, in the case of di- or triacetyl glycerol (DAG and TAG), green bioadditives for diesel or gasoline. The activity of metal-exchanged salts (Zn, Sn) in H3PW12O40 and H4SiW12O40 heteropolyacids was evaluated in esterification reactions at room temperature. Among the catalysts tested, Sn2/3PW12O40 was the most active and selective toward the glycerol esters. The process’s selectivity can be controlled by changes to reaction conditions. The maximum selectivitiesy of DAG and TAG were 60% and 30%, respectively, using a 1:3 molar ratio of glycerol/HOAc and a Sn3/2PW12O40/673 K catalyst load of 0.4 mol%. Under these conditions, a glycerol conversion rate of 95% was observed and selectivity towards DAG and TAG was observed at 60% and 30%, respectively. The results were achieved after an 8 h reaction at a temperature of 333 K. The Sn3/2PW12O40/673 K catalyst demonstrated the highest efficiency, which was attributed to its higher degree of acidity. Full article
Show Figures

Graphical abstract

15 pages, 2156 KiB  
Article
Optimization of the Solidification Method of High-Level Waste for Increasing the Thermal Stability of the Magnesium Potassium Phosphate Compound
by Svetlana A. Kulikova, Sergey S. Danilov, Kseniya Yu. Belova, Anastasiya A. Rodionova and Sergey E. Vinokurov
Energies 2020, 13(15), 3789; https://doi.org/10.3390/en13153789 - 23 Jul 2020
Cited by 8 | Viewed by 2427
Abstract
The key task in the solidification of high-level waste (HLW) into a magnesium potassium phosphate (MPP) compound is the immobilization of mobile cesium isotopes, the activity of which provides the main contribution to the total HLW activity. In addition, the obtained compound containing [...] Read more.
The key task in the solidification of high-level waste (HLW) into a magnesium potassium phosphate (MPP) compound is the immobilization of mobile cesium isotopes, the activity of which provides the main contribution to the total HLW activity. In addition, the obtained compound containing heat-generating radionuclides can be significantly heated, which increases the necessity of its thermal stability. The current work is aimed at assessing the impact of various methodological approaches to HLW solidification on the thermal stability of the MPP compound, which is evaluated by the mechanical strength of the compound and its resistance to cesium leaching. High-salt surrogate HLW solution (S-HLW) used in the investigation was prepared for solidification by adding sorbents of various types binding at least 93% of 137Cs: ferrocyanide K-Ni (FKN), natural zeolite (NZ), synthetic zeolite Na-mordenite (MOR), and silicotungstic acid (STA). Prepared S-HLW was solidified into the MPP compound. Wollastonite (W) and NZ as fillers were added to the compound composition in the case of using FKN and STA, respectively. It was found that heat treatment up to 450 °C of the compound containing FKN and W (MPP-FKN-W) almost did not affect its compressive strength (about 12–19 МPa), and it led to a decrease of high compressive strength (40–50 MPa) of the compounds containing NZ, MOR, and STA (MPP-NZ, MPP-MOR, and MPP-STA-NZ, respectively) by an average of 2–3 times. It was shown that the differential leaching rate of 137Cs on the 28th day from MPP-FKN-W after heating to 250 °C was 5.3 × 10−6 g/(cm2∙day), however, at a higher temperature, it increased by 20 and more times. The differential leaching rate of 137Cs from MPP-NZ, MPP-MOR, and MPP-STA-NZ had values of (2.9–11) × 10−5 g/(cm2∙day), while the dependence on the heat treatment temperature of the compound was negligible. Full article
(This article belongs to the Special Issue Advanced Materials for Nuclear Waste Management)
Show Figures

Graphical abstract

13 pages, 2228 KiB  
Article
Heteropolyacid Salt Catalysts for Methanol Conversion to Hydrocarbons and Dimethyl Ether: Effect of Reaction Temperature
by Yuehong Yu, Daoming Sun, Shuanjin Wang, Min Xiao, Luyi Sun and Yuezhong Meng
Catalysts 2019, 9(4), 320; https://doi.org/10.3390/catal9040320 - 1 Apr 2019
Cited by 20 | Viewed by 4775
Abstract
Phosphotungstic and silicotungstic acid salt catalysts (CuPW, CuSiW, FePW, FeSiW) were synthesized by substitution of protons with ferric and copper ions through a simple replacement reaction. The structure and thermal stability were characterized by IR, XRD and TG, and the salts showed a [...] Read more.
Phosphotungstic and silicotungstic acid salt catalysts (CuPW, CuSiW, FePW, FeSiW) were synthesized by substitution of protons with ferric and copper ions through a simple replacement reaction. The structure and thermal stability were characterized by IR, XRD and TG, and the salts showed a keggin structure and a thermal tolerance near 450 °C. Temperature programmed reactions indicated that the four catalysts showed similar trends in the change of methanol conversion, DME selectivity, and light olefins selectivity at 100–400 °C. Copper salt catalysts showed a 100% DME selectivity at temperatures ranging from 100–250 °C, while FeSiW and FePW catalysts had a 100% DME selectivity near 250 °C. Moreover, the heteropolyacid salt catalysts also produced a certain number of light olefins at the temperature ranging from 250–350 °C, and the CuSiW catalyst exhibited the highest ethylene and propylene selectivity of 44%. In the stability test evaluated at 200 °C, the catalysts showed different tendencies during the induction period and the same trends during the reduction period for the methanol conversion to DME, due to the differences in the strengths of the strong acid sites. Finally, the silicotungstic acid salt catalysts showed the longest lifetime of 120 h, much longer than the heteropolyacids. This approach provides an effective way to synthesize hydrocarbons through methanol, especially DME, at different temperatures using one catalyst. Full article
Show Figures

Figure 1

Back to TopTop