Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = sidestick

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 6248 KB  
Article
Low-Cost Strain-Gauge Force-Sensing Sidestick for 6-DoF Flight Simulation: Design and Human-in-the-Loop Evaluation
by Patrik Rožić, Milan Vrdoljak, Karolina Krajček Nikolić and Jurica Ivošević
Sensors 2025, 25(14), 4476; https://doi.org/10.3390/s25144476 - 18 Jul 2025
Cited by 1 | Viewed by 1176
Abstract
Modern fly-by-wire (FBW) aircraft demand high-fidelity simulation systems for research and training, yet existing force-sensing solutions are often prohibitively expensive. This study presents the design, development, and validation of a low-cost, reconfigurable force-sensing sidestick. The system utilizes four strain-gauge load cells to capture [...] Read more.
Modern fly-by-wire (FBW) aircraft demand high-fidelity simulation systems for research and training, yet existing force-sensing solutions are often prohibitively expensive. This study presents the design, development, and validation of a low-cost, reconfigurable force-sensing sidestick. The system utilizes four strain-gauge load cells to capture pure pilot force inputs, integrated with a 6-DoF non-linear flight model. To evaluate its performance, a pitch-angle tracking task was conducted with 16 participants (pilots and non-pilots). Objective metrics revealed that the control strategy was a primary determinant of performance. Participants employing a proactive feedforward control strategy exhibited roughly an order of magnitude lower tracking-error variance than those relying on reactive corrections. Subjective assessments using the Cooper-Harper scale and NASA-TLX corroborated the objective data, confirming the sidestick’s ability to differentiate control techniques. This work demonstrates an open-source platform that makes high-fidelity FBW simulation accessible for academic research, pilot training, and human factors analysis at a fraction of the cost of commercial systems. Full article
Show Figures

Figure 1

20 pages, 3829 KB  
Article
Thermal Management System of the UNICARagil Vehicles—A Comprehensive Overview
by Daniel Gehringer, Timo Kuthada and Andreas Wagner
World Electr. Veh. J. 2023, 14(1), 6; https://doi.org/10.3390/wevj14010006 - 28 Dec 2022
Cited by 7 | Viewed by 4444
Abstract
The collaboration project UNICARagil aiming to develop new autonomous battery electric vehicle concepts has progressed and the four vehicle prototypes have been built up. All seven universities and six industrial partners have worked towards this milestone. At the time of writing the four [...] Read more.
The collaboration project UNICARagil aiming to develop new autonomous battery electric vehicle concepts has progressed and the four vehicle prototypes have been built up. All seven universities and six industrial partners have worked towards this milestone. At the time of writing the four vehicles are operational and can be driven by a safety driver using a sidestick. The automated driving functions are being applied on the test track and first demonstrations are carried out. This paper gives an overview of the results, which have been achieved within the work package of the thermal onboard network. The thermal management system including the heating, ventilation and air conditioning system and its development process is explained in detail. Furthermore, climate chamber measurements with prototype hardware of a sensor data processing computer and the integration of the air conditioning control unit into the vehicle’s automotive service-oriented architecture framework are described. A coupled simulation approach to predict occupant thermal comfort in one vehicle variant is presented. Simulation results using environmental conditions typical for a European summer show a comfortable environment for all six occupants. In addition, the simulation and development process of a thermoelectric heat pump is shown. First measurement results with the heat pump on a test bench are highlighted which show an achievable coefficient of performance greater than two. Full article
Show Figures

Figure 1

17 pages, 33799 KB  
Article
Comparative Study of Different Algorithms for a Flight Control System Design and the Potentiality of Their Integration with a Sidestick
by Alexandr V. Efremov, Zoe Mbikayi and Eugene V. Efremov
Aerospace 2021, 8(10), 290; https://doi.org/10.3390/aerospace8100290 - 7 Oct 2021
Cited by 9 | Viewed by 4831
Abstract
The modern trend of developing highly automated aircraft is characterized by a transition from traditional methods and technical solutions to innovative approaches in order to control the system, inceptor and display design. This paper deals with the development and comparison of flight control [...] Read more.
The modern trend of developing highly automated aircraft is characterized by a transition from traditional methods and technical solutions to innovative approaches in order to control the system, inceptor and display design. This paper deals with the development and comparison of flight control system algorithms based on inverse dynamics, H-infinity and traditional feedback methods. The integration of a controller based on inverse dynamics with a novel type of sidestick, shaping the pilot output signal such that it is proportional to the control force (force sensing control—FSC), is studied. The inverse dynamics-based controller is chosen, as it provides a variance of error that is up to 2.3 times less than that of the feedback gains and up to 1.5 times less than that of the H-infinity controller in a pitch tracking task. The synergetic effect arising from the proposed integration is also evaluated. The evaluation of the effectiveness of the methods is carried out through mathematical modeling of the pilot–aircraft system and ground-based simulations on a helicopter mathematical model in a pitch tracking task. Full article
(This article belongs to the Special Issue Aerospace Guidance, Navigation and Control)
Show Figures

Figure 1

Back to TopTop