Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = shoshonitic syenite porphyry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 21759 KiB  
Article
Origin and Tectonic Implication of Cenozoic Alkali-Rich Porphyry in the Beiya Au-Polymetallic Deposit, Western Yunnan, China
by Yun Zhong, Yajuan Yuan, Ye Lu and Bin Xia
Minerals 2025, 15(5), 531; https://doi.org/10.3390/min15050531 - 16 May 2025
Viewed by 330
Abstract
Cenozoic alkali-rich porphyries are widely distributed in the junction zone between the Sanjiang Orogenic belt and the Yangtze Plate. They are of great significance for understanding the regional geodynamics, tectonic evolution, and metallogenesis. However, the origin of these porphyries remains controversial. In this [...] Read more.
Cenozoic alkali-rich porphyries are widely distributed in the junction zone between the Sanjiang Orogenic belt and the Yangtze Plate. They are of great significance for understanding the regional geodynamics, tectonic evolution, and metallogenesis. However, the origin of these porphyries remains controversial. In this study, new petrological, geochemical, and geochronological data are presented for Cenozoic syenite porphyry from the Beiya porphyry Au-polymetallic deposit in western Yunnan. Zircon U-Pb dating results show that the Beiya syenite porphyries formed around 36.3–35.0 Ma, coinciding with the magmatic peak in the Jinshajiang-Red River (JSJ-RR) alkali-rich porphyry belt. Geochemical analyses indicate that the Beiya porphyries have potassic characteristics and an arc-like geochemical affinity, with C-type adakite affinity, suggesting a post-collisional setting. The JSJ-RR fault zone is unlikely to be the primary mechanism responsible for the formation of this alkali-rich porphyry magmatism. Instead, the development of the Beiya alkali-rich porphyries is likely associated with the convective removal of the lower part of the overthickened lithospheric mantle and asthenospheric upwelling during the Eocene–Oligocene. Their magmas probably originated from the partial melting of Paleo–Mesoproterozoic garnet amphibolite facies rocks in the thickened lower continental crust, with the addition of shoshonitic mafic magmas produced by the partial melting of metasomatized lithospheric mantle triggered by asthenospheric upwelling. This study provides additional reliable evidence to further constrain the origin of Cenozoic alkali-rich porphyries in the JSJ-RR belt. Full article
Show Figures

Figure 1

22 pages, 25391 KiB  
Article
Petrogenesis and Tectonic Implications of the Oligocene Dalongtan Shoshonitic Syenite Porphyry in Central Yunnan, Southeastern Tibetan Plateau: Constraints from Geochronology, Geochemistry and Sr-Nd-Hf Isotopes
by Hang Yang, Anlin Liu, Peng Wu and Feng Wang
Minerals 2024, 14(3), 282; https://doi.org/10.3390/min14030282 - 8 Mar 2024
Cited by 1 | Viewed by 1523
Abstract
Shoshonitic rocks are widely distributed in post-collisional settings and provide key information on deep geodynamic mechanisms and magmatic evolution. In this paper, we present petrographic, zircon U-Pb age-related, trace elemental, Hf isotopic, bulk-rock elemental, and Sr-Nd isotopic data of the Dalongtan shoshonitic syenite [...] Read more.
Shoshonitic rocks are widely distributed in post-collisional settings and provide key information on deep geodynamic mechanisms and magmatic evolution. In this paper, we present petrographic, zircon U-Pb age-related, trace elemental, Hf isotopic, bulk-rock elemental, and Sr-Nd isotopic data of the Dalongtan shoshonitic syenite porphyries (DSSPs) in central Yunnan, southeastern Tibet. The DSSPs formed at 33.2 ± 0.3 Ma in a post-collisional setting. They define linear trends on Harker diagrams, and they display similar trace element patterns and enriched bulk-rock Sr-Nd isotopes [(87Sr/86Sr)i = 0.70964–0.70968, εNd(t) = −12.9 to −12.7] and zircon Hf isotopes (εHf(t) = −15.7 to −13.1) to the coeval mantle-derived potassic mafic rocks. This suggests that the DSSPs were fractionated from the lithospheric mantle-derived mafic magmas. The DSSPs, along with the coeval felsic and mafic magmatic rocks (37.2–32.3 Ma), exhibit a planar distribution on the SE Tibet and predate the left-lateral shearing of the Ailaoshan–Red River shear zone (ARSZ) (32–22 Ma), suggesting that there are no genetic relationships between them. The DSSPs have geochemical characteristics similar to those of A-type granites, with high total alkalinity (10.39–11.17 wt.%), HFSE concentrations (Zr + Nb + Ce + Y = 890.2–1054.3 ppm), Ga/Al ratios (10,000 × Ga/Al = 2.95–3.46), whole-rock zircon saturation temperatures (906–947 °C), and oxygen fugacity (ΔFMQ = +3.30–+4.65), indicating that they are products of the high-temperature melting of the lithosphere as a result of asthenosphere upwelling in extensional settings. Based on our data and regional observations, it is proposed that the generation of the DSSPs may be linked to the convective thinning of the thickened lithospheric mantle following the India–Asia collision. Full article
(This article belongs to the Special Issue Petrogenesis, Magmatism and Geodynamics of Orogenic Belts)
Show Figures

Figure 1

25 pages, 9166 KiB  
Article
Petrogenesis of Alkaline Complex of the Longbaoshan Rare Earth Element Deposit in the Luxi Block, North China Craton, China
by Ze-Yu Yang, Shan-Shan Li, Mao-Guo An, Cheng-Long Zhi, Zhen Shang, Zheng-Yu Long, Jian-Zhen Geng, Hao-Cheng Yu and Kun-Feng Qiu
Minerals 2022, 12(12), 1524; https://doi.org/10.3390/min12121524 - 28 Nov 2022
Cited by 2 | Viewed by 2736
Abstract
The alkaline complex in the southwest region of Luxi Terrane of the North China Craton is spatially correlated with the newly discovered Longbaoshan REE deposit. Its petrogenesis, however, remains ambiguous. In this study, we present an integrated petrology, whole-rock geochemistry, sphene U-Pb and [...] Read more.
The alkaline complex in the southwest region of Luxi Terrane of the North China Craton is spatially correlated with the newly discovered Longbaoshan REE deposit. Its petrogenesis, however, remains ambiguous. In this study, we present an integrated petrology, whole-rock geochemistry, sphene U-Pb and rare earth element data from the Longbaoshan alkaline complex to investigate the petrogenesis, magma source and tectonic evolution. The Longbaoshan alkaline complex consists of mafic to intermediate rocks of hornblende diorite and alkaline hornblende syenite porphyry, biotite monzonite porphyry and aegirine diorite porphyrite. The hornblende diorites show a composition of low SiO2, high MgO, Fe2O3 and moderate Na2O, CaO and are metaluminous and medium-to-high-K calc-alkaline. The hornblende syenite porphyries, biotite monzonites and argirine diorite porphyrites display a relatively higher content of SiO2, Na2O, K2O and Al2O3 and lower contents of MgO, Fe2O3 and CaO and are metaluminous, peralkaline, high-K calcic-alkaline and shoshonite. The sphene U-Pb data shows that the parent magma of the hornblende diorite was emplaced at ca. 120 Ma. All these samples show a common depletion in Th, Nb-Ta and Zr-Hf and enrichment in large ion lithophile elements (e.g., Pb, Ba, Sr) and Light Rare Earth Elements. The magma may have experienced fractionation of pyroxene, amphibole, sphene, apatite and zircon during its evolution. The variable La content, La/Sm, Rb/Sr and (Ta/Th) N ratios indicate that the parent magma may produce by partial melting of a mantle source that was interacted with sediment-derived melts in a subduction setting. Therefore, we propose that the parent magma of the Longbaoshan alkaline complex was derived from a lithospheric mantle which was metasomatized by sediment-derived melt in a prior subduction process. The enriched magma was emplaced through an extension process and experienced subsequent fractionation and assimilation with the continental crust during the rollback of the Paleo Pacific Ocean plate. Full article
Show Figures

Figure 1

Back to TopTop