Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = short cationic antimicrobial peptide family

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2273 KiB  
Article
Cationicity Enhancement on the Hydrophilic Face of Ctriporin Significantly Reduces Its Hemolytic Activity and Improves the Antimicrobial Activity against Antibiotic-Resistant ESKAPE Pathogens
by Xudong Luo, Huan Deng, Li Ding, Xiangdong Ye, Fang Sun, Chenhu Qin and Zongyun Chen
Toxins 2024, 16(3), 156; https://doi.org/10.3390/toxins16030156 - 18 Mar 2024
Cited by 1 | Viewed by 2109
Abstract
The ESKAPE pathogen-associated antimicrobial resistance is a global public health issue, and novel therapeutic strategies are urgently needed. The short cationic antimicrobial peptide (AMP) family represents an important subfamily of scorpion-derived AMPs, but high hemolysis and poor antimicrobial activity hinder their therapeutic application. [...] Read more.
The ESKAPE pathogen-associated antimicrobial resistance is a global public health issue, and novel therapeutic strategies are urgently needed. The short cationic antimicrobial peptide (AMP) family represents an important subfamily of scorpion-derived AMPs, but high hemolysis and poor antimicrobial activity hinder their therapeutic application. Here, we recomposed the hydrophilic face of Ctriporin through lysine substitution. We observed non-linear correlations between the physiochemical properties of the peptides and their activities, and significant deviations regarding the changes of antimicrobial activities against different bacterial species, as well as hemolytic activity. Most importantly, we obtained two Ctriporin analogs, CM5 and CM6, these two have significantly reduced hemolytic activity and more potent antimicrobial activities against all tested antibiotic-resistant ESKAPE pathogens. Fluorescence experiments indicated they may perform the bactericidal function through a membrane-lytic action model. Our work sheds light on the potential of CM5 and CM6 in developing novel antimicrobials and gives clues for optimizing peptides from the short cationic AMP family. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Figure 1

16 pages, 1786 KiB  
Article
Associating Biological Activity and Predicted Structure of Antimicrobial Peptides from Amphibians and Insects
by Amelia Richter, Darcy Sutherland, Hossein Ebrahimikondori, Alana Babcock, Nathan Louie, Chenkai Li, Lauren Coombe, Diana Lin, René L. Warren, Anat Yanai, Monica Kotkoff, Caren C. Helbing, Fraser Hof, Linda M. N. Hoang and Inanc Birol
Antibiotics 2022, 11(12), 1710; https://doi.org/10.3390/antibiotics11121710 - 27 Nov 2022
Cited by 12 | Viewed by 4082
Abstract
Antimicrobial peptides (AMPs) are a diverse class of short, often cationic biological molecules that present promising opportunities in the development of new therapeutics to combat antimicrobial resistance. Newly developed in silico methods offer the ability to rapidly discover numerous novel AMPs with a [...] Read more.
Antimicrobial peptides (AMPs) are a diverse class of short, often cationic biological molecules that present promising opportunities in the development of new therapeutics to combat antimicrobial resistance. Newly developed in silico methods offer the ability to rapidly discover numerous novel AMPs with a variety of physiochemical properties. Herein, using the rAMPage AMP discovery pipeline, we bioinformatically identified 51 AMP candidates from amphibia and insect RNA-seq data and present their in-depth characterization. The studied AMPs demonstrate activity against a panel of bacterial pathogens and have undetected or low toxicity to red blood cells and human cultured cells. Amino acid sequence analysis revealed that 30 of these bioactive peptides belong to either the Brevinin-1, Brevinin-2, Nigrocin-2, or Apidaecin AMP families. Prediction of three-dimensional structures using ColabFold indicated an association between peptides predicted to adopt a helical structure and broad-spectrum antibacterial activity against the Gram-negative and Gram-positive species tested in our panel. These findings highlight the utility of associating the diverse sequences of novel AMPs with their estimated peptide structures in categorizing AMPs and predicting their antimicrobial activity. Full article
(This article belongs to the Special Issue Peptide-Based Antibiotics: Challenges and Opportunities)
Show Figures

Figure 1

22 pages, 4339 KiB  
Article
Evaluating the Bioactivity of a Novel Antimicrobial and Anticancer Peptide, Dermaseptin-PS4(Der-PS4), from the Skin Secretion of Phyllomedusa sauvagii
by Dong Chen, Xiaowei Zhou, Xi Chen, Linyuan Huang, Xinping Xi, Chengbang Ma, Mei Zhou, Lei Wang and Tianbao Chen
Molecules 2019, 24(16), 2974; https://doi.org/10.3390/molecules24162974 - 16 Aug 2019
Cited by 24 | Viewed by 4673
Abstract
Dermaseptins belonging to a large family of cationic membrane-disruption antimicrobial peptides display extensive antibacterial and antiproliferative activities depending on a coil-to-helix transition and the specific structural parameters. Herein, a novel dermaseptin peptide named Der-PS4 was discovered from the skin secretion of the waxy [...] Read more.
Dermaseptins belonging to a large family of cationic membrane-disruption antimicrobial peptides display extensive antibacterial and antiproliferative activities depending on a coil-to-helix transition and the specific structural parameters. Herein, a novel dermaseptin peptide named Der-PS4 was discovered from the skin secretion of the waxy monkey tree frog, Phyllomedusa sauvagii. The complementary DNA (cDNA)-encoding precursor was obtained relying on “shotgun” cloning, and afterwards, a mature peptide amino acid sequence was identified by reverse-phase high performance liquid chromatography (RP-HPLC) and MS/MS. Specimens were chemically synthesized and applied for further functional studies. Structural analysis demonstrated a higher α-helical content in the membrane-mimetic environment compared with that in the ammonium acetate/water circumstance. Der-PS4 displayed a broad spectrum of antimicrobial activities against tested pathogenic microorganisms, however, exhibiting slight membrane-damaging effectiveness towards horse red blood cells. Coincident with the inhibitory activities on pathogens, Der-PS4 also showed considerable biofilm eradicating impact. Also, Der-PS4 penetrated cell membrane in a relative short period under each minimum bactericidal concentration. In addition, Der-PS4 possessed antiproliferative capacity against five cancer cell lines, while presenting slight suppressing effect on human microvascular endothelial, HMEC-1. These findings provide a promising insight for the discovery and development of novel drugs from a natural source. Full article
(This article belongs to the Special Issue Peptide Chemistry Ⅱ)
Show Figures

Figure 1

Back to TopTop