Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = shizophrenia

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2384 KiB  
Article
Method for Classifying Schizophrenia Patients Based on Machine Learning
by Carmen Soria, Yoel Arroyo, Ana María Torres, Miguel Ángel Redondo, Christoph Basar and Jorge Mateo
J. Clin. Med. 2023, 12(13), 4375; https://doi.org/10.3390/jcm12134375 - 29 Jun 2023
Cited by 12 | Viewed by 2903
Abstract
Schizophrenia is a chronic and severe mental disorder that affects individuals in various ways, particularly in their ability to perceive, process, and respond to stimuli. This condition has a significant impact on a considerable number of individuals. Consequently, the study, analysis, and characterization [...] Read more.
Schizophrenia is a chronic and severe mental disorder that affects individuals in various ways, particularly in their ability to perceive, process, and respond to stimuli. This condition has a significant impact on a considerable number of individuals. Consequently, the study, analysis, and characterization of this pathology are of paramount importance. Electroencephalography (EEG) is frequently utilized in the diagnostic assessment of various brain disorders due to its non-intrusiveness, excellent resolution and ease of placement. However, the manual analysis of electroencephalogram (EEG) recordings can be a complex and time-consuming task for healthcare professionals. Therefore, the automated analysis of EEG recordings can help alleviate the burden on doctors and provide valuable insights to support clinical diagnosis. Many studies are working along these lines. In this research paper, the authors propose a machine learning (ML) method based on the eXtreme Gradient Boosting (XGB) algorithm for analyzing EEG signals. The study compares the performance of the proposed XGB-based approach with four other supervised ML systems. According to the results, the proposed XGB-based method demonstrates superior performance, with an AUC value of 0.94 and an accuracy value of 0.94, surpassing the other compared methods. The implemented system exhibits high accuracy and robustness in accurately classifying schizophrenia patients based on EEG recordings. This method holds the potential to be implemented as a valuable complementary tool for clinical use in hospitals, supporting clinicians in their clinical diagnosis of schizophrenia. Full article
(This article belongs to the Section Mental Health)
Show Figures

Figure 1

Back to TopTop