Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = ship/iceberg classification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4544 KB  
Article
Enhanced Ship/Iceberg Classification in SAR Images Using Feature Extraction and the Fusion of Machine Learning Algorithms
by Zahra Jafari, Ebrahim Karami, Rocky Taylor and Pradeep Bobby
Remote Sens. 2023, 15(21), 5202; https://doi.org/10.3390/rs15215202 - 1 Nov 2023
Cited by 8 | Viewed by 2709
Abstract
Drifting icebergs present significant navigational and operational risks in remote offshore regions, particularly along the East Coast of Canada. In such areas with harsh weather conditions, traditional methods of monitoring and assessing iceberg-related hazards, such as aerial reconnaissance and shore-based support, are often [...] Read more.
Drifting icebergs present significant navigational and operational risks in remote offshore regions, particularly along the East Coast of Canada. In such areas with harsh weather conditions, traditional methods of monitoring and assessing iceberg-related hazards, such as aerial reconnaissance and shore-based support, are often unfeasible. As a result, satellite-based monitoring using Synthetic Aperture Radar (SAR) imagery emerges as a practical solution for timely and remote iceberg classifications. We utilize the C-CORE/Statoil dataset, a labeled dataset containing both ship and iceberg instances. This dataset is derived from dual-polarized Sentinel-1. Our methodology combines state-of-the-art deep learning techniques with comprehensive feature selection. These features are coupled with machine learning algorithms (neural network, LightGBM, and CatBoost) to achieve accurate and efficient classification results. By utilizing quantitative features, we capture subtle patterns that enhance the model’s discriminative capabilities. Through extensive experiments on the provided dataset, our approach achieves a remarkable accuracy of 95.4% and a log loss of 0.11 in distinguishing icebergs from ships in SAR images. The introduction of additional ship images from another dataset can further enhance both accuracy and log loss results to 96.1% and 0.09, respectively. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Figure 1

20 pages, 6342 KB  
Article
Aggregate Channel Features and Fast Regions CNN Approach for Classification of Ship and Iceberg
by Sivapriya Sethu Ramasubiramanian, Suresh Sivasubramaniyan and Mohamed Fathimal Peer Mohamed
Appl. Sci. 2023, 13(12), 7292; https://doi.org/10.3390/app13127292 - 19 Jun 2023
Cited by 2 | Viewed by 2488
Abstract
Detection and classification of icebergs and ships in synthetic aperture radar (SAR) images play a vital role in marine surveillance systems even though available adaptive threshold methods give satisfying results on detection and classification for ships and icebergs, including techniques of convolutional neural [...] Read more.
Detection and classification of icebergs and ships in synthetic aperture radar (SAR) images play a vital role in marine surveillance systems even though available adaptive threshold methods give satisfying results on detection and classification for ships and icebergs, including techniques of convolutional neural networks (CNNs), but need more accuracy and precision. An efficient and accurate method was developed to detect and classify the ship and icebergs. Hence, the research method proposed locating and classifying both ships and icebergs in a given SAR image with the help of deep learning (DL) and non-DL methods. A non-DL method utilized here was the aggregate channel features (ACF) detector, which extracts region proposals from huge SAR images. The DL object detector called fast regions CNN (FRCNN) detects objects accurately from the result of ACF since the ACF method avoids unwanted regions. The novelty of this study was that ACF-FRCNN concentrates only on accurately classifying ships and icebergs. The proposed ACF-FRCNN method gave a better performance in terms of loss (18.32%), accuracy (96.34%), recall (98.32%), precision (95.97%), and the F1 score (97.13%). Compared to other conventional methods, the combined effect of ACF and FRCNN increased the speed and quality of the detection of ships and icebergs. Thus, the ACF-FRCNN method is considered a novel method for over 75 × 75 resolution ship and iceberg SAR images. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

16 pages, 2566 KB  
Article
SAR Ship–Iceberg Discrimination in Arctic Conditions Using Deep Learning
by Peder Heiselberg, Kristian A. Sørensen, Henning Heiselberg and Ole B. Andersen
Remote Sens. 2022, 14(9), 2236; https://doi.org/10.3390/rs14092236 - 6 May 2022
Cited by 23 | Viewed by 4379
Abstract
Maritime surveillance of the Arctic region is of growing importance as shipping, fishing and tourism are increasing due to the sea ice retreat caused by global warming. Ships that do not identify themselves with a transponder system, so-called dark ships, pose a security [...] Read more.
Maritime surveillance of the Arctic region is of growing importance as shipping, fishing and tourism are increasing due to the sea ice retreat caused by global warming. Ships that do not identify themselves with a transponder system, so-called dark ships, pose a security risk. They can be detected by SAR satellites, which can monitor the vast Arctic region through clouds, day and night, with the caveat that the abundant icebergs in the Arctic cause false alarms. We collect and analyze 200 Sentinel-1 horizontally polarized SAR scenes from areas with high maritime traffic and from the Arctic region with a high density of icebergs. Ships and icebergs are detected using a continuous wavelet transform, which is optimized by correlating ships to known AIS positions. Globally, we are able to assign 72% of the AIS signals to a SAR ship and 32% of the SAR ships to an AIS signal. The ships are used to construct an annotated dataset of more than 9000 ships and ten times as many icebergs. The dataset is used for training several convolutional neural networks, and we propose a new network which achieves state of the art performance compared to previous ship–iceberg discrimination networks, reaching 93% validation accuracy. Furthermore, we collect a smaller test dataset consisting of 424 ships from 100 Arctic scenes which are correlated to AIS positions. This dataset constitutes an operational Arctic test scenario. We find these ships harder to classify with a lower test accuracy of 83%, because some of the ships sail near icebergs and ice floes, which confuses the classification algorithms. Full article
(This article belongs to the Special Issue Deep Learning for Remote Sensing Image Classification)
Show Figures

Figure 1

17 pages, 5685 KB  
Article
Ship-Iceberg Classification in SAR and Multispectral Satellite Images with Neural Networks
by Henning Heiselberg
Remote Sens. 2020, 12(15), 2353; https://doi.org/10.3390/rs12152353 - 22 Jul 2020
Cited by 24 | Viewed by 5159
Abstract
Classification of ships and icebergs in the Arctic in satellite images is an important problem. We study how to train deep neural networks for improving the discrimination of ships and icebergs in multispectral satellite images. We also analyze synthetic-aperture radar (SAR) images for [...] Read more.
Classification of ships and icebergs in the Arctic in satellite images is an important problem. We study how to train deep neural networks for improving the discrimination of ships and icebergs in multispectral satellite images. We also analyze synthetic-aperture radar (SAR) images for comparison. The annotated datasets of ships and icebergs are collected from multispectral Sentinel-2 data and taken from the C-CORE dataset of Sentinel-1 SAR images. Convolutional Neural Networks with a range of hyperparameters are tested and optimized. Classification accuracies are considerably better for deep neural networks than for support vector machines. Deeper neural nets improve the accuracy per epoch but at the cost of longer processing time. Extending the datasets with semi-supervised data from Greenland improves the accuracy considerably whereas data augmentation by rotating and flipping the images has little effect. The resulting classification accuracies for ships and icebergs are 86% for the SAR data and 96% for the MSI data due to the better resolution and more multispectral bands. The size and quality of the datasets are essential for training the deep neural networks, and methods to improve them are discussed. The reduced false alarm rates and exploitation of multisensory data are important for Arctic search and rescue services. Full article
Show Figures

Graphical abstract

19 pages, 7025 KB  
Article
Ship-Iceberg Discrimination in Sentinel-2 Multispectral Imagery by Supervised Classification
by Peder Heiselberg and Henning Heiselberg
Remote Sens. 2017, 9(11), 1156; https://doi.org/10.3390/rs9111156 - 10 Nov 2017
Cited by 22 | Viewed by 6725
Abstract
The European Space Agency Sentinel-2 satellites provide multispectral images with pixel sizes down to 10 m. This high resolution allows for fast and frequent detection, classification and discrimination of various objects in the sea, which is relevant in general and specifically for the [...] Read more.
The European Space Agency Sentinel-2 satellites provide multispectral images with pixel sizes down to 10 m. This high resolution allows for fast and frequent detection, classification and discrimination of various objects in the sea, which is relevant in general and specifically for the vast Arctic environment. We analyze several sets of multispectral image data from Denmark and Greenland fall and winter, and describe a supervised search and classification algorithm based on physical parameters that successfully finds and classifies all objects in the sea with reflectance above a threshold. It discriminates between objects like ships, islands, wakes, and icebergs, ice floes, and clouds with accuracy better than 90%. Pan-sharpening the infrared bands leads to classification and discrimination of ice floes and clouds better than 95%. For complex images with abundant ice floes or clouds, however, the false alarm rate dominates for small non-sailing boats. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Graphical abstract

Back to TopTop