Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = shaken black tea

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1089 KiB  
Article
Effect of Leaf Grade on Taste and Aroma of Shaken Hunan Black Tea
by Kuofei Wang, Yangbo Xiao, Nianci Xie, Hao Xu, Saijun Li, Changwei Liu, Jianan Huang, Shuguang Zhang, Zhonghua Liu and Xia Yin
Foods 2024, 13(1), 42; https://doi.org/10.3390/foods13010042 - 21 Dec 2023
Cited by 7 | Viewed by 2184
Abstract
Shaken Hunan black tea is an innovative Hunan black tea processed by adding shaking to the traditional Hunan black tea. The quality of shaken black tea is influenced by leaf grades of different maturity. In this study, the taste and aroma quality of [...] Read more.
Shaken Hunan black tea is an innovative Hunan black tea processed by adding shaking to the traditional Hunan black tea. The quality of shaken black tea is influenced by leaf grades of different maturity. In this study, the taste and aroma quality of shaken Hunan black tea processed with different grades were analyzed by sensory evaluation (SP, HPLC, and HS-SPME/GC-MS). The results showed that shaken Hunan black tea processed with one bud and two leaves has the best quality, which has a sweet, mellow, and slightly floral taste, as well as a floral, honey, and sweet aroma. Moreover, caffeine and EGCG were identified as the most important bitter and astringent substances in shaken Hunan black. Combined with the analysis of GC-MS and OAV analysis, geraniol, jasmone, β-myrcene, citral, and trans-β-ocimene might be the most important components that affect the sweet aroma, while methyl jasmonate, indole, and nerolidol were the key components that affect the floral aroma of shaken Hunan black tea. This study lays a foundation for this study of the taste and aroma characteristics of shaken Hunan black tea and guides enterprises to improve shaken black tea processing technology. Full article
Show Figures

Graphical abstract

17 pages, 3114 KiB  
Article
Dynamic Changes in Volatile Compounds of Shaken Black Tea during Its Manufacture by GC × GC–TOFMS and Multivariate Data Analysis
by Jinjin Xue, Panpan Liu, Junfeng Yin, Weiwei Wang, Jianyong Zhang, Wei Wang, Ting Le, Dejiang Ni and Heyuan Jiang
Foods 2022, 11(9), 1228; https://doi.org/10.3390/foods11091228 - 25 Apr 2022
Cited by 56 | Viewed by 4061
Abstract
Changes in key odorants of shaken black tea (SBT) during its manufacture were determined using headspace solid-phase microextraction (HS-SPME) combined with comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry (GC × GC–TOFMS) and multivariate data analysis. A total of 241 volatiles was identified, comprising 49 [...] Read more.
Changes in key odorants of shaken black tea (SBT) during its manufacture were determined using headspace solid-phase microextraction (HS-SPME) combined with comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry (GC × GC–TOFMS) and multivariate data analysis. A total of 241 volatiles was identified, comprising 49 aldehydes, 40 esters, 29 alcohols, 34 ketones, 30 aromatics, 24 alkenes, 17 alkanes, 13 furans, and 5 other compounds. A total of 27 volatiles had average relative odor activity values (rOAVs) greater than 1, among which (E)-β-ionone, (E,Z)-2,6-nonadienal, and 1-octen-3-one exhibited the highest values. According to the criteria of variable importance in projection (VIP) > 1, p < 0.05, and |log2FC| > 1, 61 discriminatory volatile compounds were screened out, of which 26 substances were shared in the shaking stage (FL vs. S1, S1 vs. S2, S2 vs. S3). The results of the orthogonal partial least squares discriminate analysis (OPLS-DA) differentiated the influence of shaking, fermentation, and drying processes on the formation of volatile compounds in SBT. In particular, (Z)-3-hexenol, (Z)-hexanoic acid, 3-hexenyl ester, (E)-β-farnesene, and indole mainly formed in the shaking stage, which promoted the formation of the floral and fruity flavor of black tea. This study enriches the basic theory of black tea flavor quality and provide the theoretical basis for the further development of aroma quality control. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

Back to TopTop