Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = shaft dryer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4334 KiB  
Article
Advancing Industrial Process Electrification and Heat Pump Integration with New Exergy Pinch Analysis Targeting Techniques
by Timothy Gordon Walmsley, Benjamin James Lincoln, Roger Padullés and Donald John Cleland
Energies 2024, 17(12), 2838; https://doi.org/10.3390/en17122838 - 8 Jun 2024
Cited by 3 | Viewed by 1880
Abstract
The process integration and electrification concept has significant potential to support the industrial transition to low- and net-zero-carbon process heating. This increasingly essential concept requires an expanded set of process analysis tools to fully comprehend the interplay of heat recovery and process electrification [...] Read more.
The process integration and electrification concept has significant potential to support the industrial transition to low- and net-zero-carbon process heating. This increasingly essential concept requires an expanded set of process analysis tools to fully comprehend the interplay of heat recovery and process electrification (e.g., heat pumping). In this paper, new Exergy Pinch Analysis tools and methods are proposed that can set lower bound work targets by acutely balancing process heat recovery and heat pumping. As part of the analysis, net energy and exergy load curves enable visualization of energy and exergy surpluses and deficits. As extensions to the grand composite curve in conventional Pinch Analysis, these curves enable examination of different pocket-cutting strategies, revealing their distinct impacts on heat, exergy, and work targets. Demonstrated via case studies on a spray dryer and an evaporator, the exergy analysis targets net shaft-work correctly. In the evaporator case study, the analysis points to the heat recovery pockets playing an essential role in reducing the work target by 25.7%. The findings offer substantial potential for improved industrial energy management, providing a robust framework for engineers to enhance industrial process and energy sustainability. Full article
(This article belongs to the Special Issue Advanced Research on Heat Exchangers Networks and Heat Recovery)
Show Figures

Figure 1

15 pages, 1612 KiB  
Article
An Analysis of Long-Process Ironmaking in a Reduction Smelting Furnace with Hydrogen-Enriched Conditions
by Haifeng Li and Jingran Chen
Metals 2023, 13(10), 1756; https://doi.org/10.3390/met13101756 - 16 Oct 2023
Cited by 11 | Viewed by 3927
Abstract
The blast furnace and basic oxygen furnace (BF-BOF) is still the main process used for the production of iron and steel in China. With the approach of the “dual carbon” target, the iron and steel industry needs to transform and upgrade to “green” [...] Read more.
The blast furnace and basic oxygen furnace (BF-BOF) is still the main process used for the production of iron and steel in China. With the approach of the “dual carbon” target, the iron and steel industry needs to transform and upgrade to “green” and “low-carbon” practices. At present, the low-carbon hydrogen metallurgy technology route based on hydrogen instead of carbon is mainly adopted at home and abroad, and the domestic route is mainly based on oxygen-rich BFs and hydrogen-based shaft furnaces (SFs). It promotes the transformation of the traditional BF to hydrogen-rich, oxygen-rich, and carbon-recycled (Hy-O-CR) technology. A new ironmaking system and method for a reduction smelting furnace (RSF) with Hy-O-CR is presented in this paper. The ironmaking system includes nine sets of equipment, such as an RSF, gas dust collector, dryer, CO2 separator, electrolytic water device, blower, heat exchanger, storage tank of reduction gas, and chimney. From top to bottom, the RSF includes an indirect reduction zone, a soft melting dripping zone, and a coke combustion zone. The ironmaking methods include coke and ore mixed charging, injection of the mixed reduction gas composed of electrolytic green hydrogen and circulating gas from the furnace gas into the indirect reduction zone, injection of oxygen into the coke combustion zone, CO2 recovery of the furnace top gas, and slag and iron treatment. By redesigning the size of the furnace type and optimizing the parameters, the metallization rate of the indirect reduction zone can be as high as 85–95%, and the carbon consumption per ton of hot metal can be greatly reduced. By using oxygen to recycle the reduction gas produced by its reactor, the process achieves the goal of reducing CO2 emissions by more than 50%, thus realizing green and low-carbon metallurgy. Full article
Show Figures

Figure 1

13 pages, 5020 KiB  
Article
Development of a Novel Shaft Dryer for Coal-Based Green Needle Coke Drying Process
by Guowei Xie, Xinxin Zhang, Jiuju Cai, Wenqiang Sun, Ketao Zhang and Shiyu Zhang
Appl. Sci. 2019, 9(16), 3301; https://doi.org/10.3390/app9163301 - 12 Aug 2019
Cited by 6 | Viewed by 4137
Abstract
The industry of coal-based green needle coke develops rapidly in recent years. The green coke produced by the delayed coking process usually has a moisture content of 10%–25%, which damages the calcining kiln and needle coke quality. A standing dehydration tank is currently [...] Read more.
The industry of coal-based green needle coke develops rapidly in recent years. The green coke produced by the delayed coking process usually has a moisture content of 10%–25%, which damages the calcining kiln and needle coke quality. A standing dehydration tank is currently used to reduce the moisture content of green coke. However, this process has several weaknesses such as unstable operation, large land area occupation, and low productivity. To solve this issue, a novel drying system with a shaft dryer proposed in this work is suitable for green coke drying. Moreover, the performances of the green coke are investigated to design the proposed shaft dryer. The experimental result shows that the average vertex angle of the pile of green cokes is 109.2°. The pressure drop of the dryer increases linearly with the green coke bed height, and the green coke with a larger size has a smaller pressure drop. The specific pressure drops are 5714, 5554, 5354, and 5114 Pa/m, with median green coke sizes of 26.85, 29.00, 30.45, and 31.80 mm, respectively. Tooth spacing is another important parameter which influences the mass of green coke leakage. The optimal tooth spacing and rotary speed of the rollers are determined by the required production yield. Full article
(This article belongs to the Section Applied Industrial Technologies)
Show Figures

Graphical abstract

Back to TopTop