Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = semi-closed mitosis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3024 KiB  
Review
Nuclear Envelope Dynamics in Dictyostelium Amoebae
by Ralph Gräf, Petros Batsios, Marianne Grafe, Irene Meyer and Kristina Mitic
Cells 2025, 14(3), 186; https://doi.org/10.3390/cells14030186 - 26 Jan 2025
Viewed by 1493
Abstract
In the last decades, the study of many nuclear envelope components in Dictyostelium amoebae has revealed conserved mechanisms of nuclear envelope dynamics that root back unexpectedly deep into the eukaryotic tree of life. In this review, we describe the state of the art [...] Read more.
In the last decades, the study of many nuclear envelope components in Dictyostelium amoebae has revealed conserved mechanisms of nuclear envelope dynamics that root back unexpectedly deep into the eukaryotic tree of life. In this review, we describe the state of the art in nuclear envelope research in this organism starting from early work on nuclear pore complexes to characterization of the first true lamin in a non-metazoan organism and its associated nuclear envelope transmembrane proteins, such as the HeH-family protein Src1 and the LINC complex protein Sun1. We also describe the dynamic processes during semi-closed mitosis, including centrosome insertion into the nuclear envelope, and processes involved in the restoration of nuclear envelope permeability around mitotic exit and compare them to the situation in cells with open or fully closed mitosis. Full article
(This article belongs to the Collection Feature Papers in Cell Nuclei: Function, Transport and Receptors)
Show Figures

Figure 1

13 pages, 6875 KiB  
Article
From Trypomastigotes to Trypomastigotes: Analyzing the One-Way Intracellular Journey of Trypanosoma cruzi by Ultrastructure Expansion Microscopy
by Ramiro Tomasina, Fabiana C. González, Andrés Cabrera, Yester Basmadjián and Carlos Robello
Pathogens 2024, 13(10), 866; https://doi.org/10.3390/pathogens13100866 - 2 Oct 2024
Cited by 2 | Viewed by 3449
Abstract
The protozoan parasite Trypanosoma cruzi is the causative agent of Chagas disease, also called American trypanosomiasis. This neglected tropical disease affects millions of individuals across the Americas. To complete its life cycle, T. cruzi parasitizes both vertebrate hosts and its vector, commonly known [...] Read more.
The protozoan parasite Trypanosoma cruzi is the causative agent of Chagas disease, also called American trypanosomiasis. This neglected tropical disease affects millions of individuals across the Americas. To complete its life cycle, T. cruzi parasitizes both vertebrate hosts and its vector, commonly known as the ‘kissing bug’. The parasite’s survival and proliferation strategies are driven by the diverse environments it encounters. Despite being described by Carlos Chagas in 1909, significant knowledge gaps persist regarding the parasite’s various life forms and adaptive capabilities in response to environmental cues. In this study, we employed Ultrastructure Expansion Microscopy to explore the intricate journey of T. cruzi within the host cell. Upon entry into the host cell, trypomastigotes undergo folding, resulting in intermediate forms characterized by a rounded cell body, anterior positioning of basal bodies, and a shortened flagellum. The repositioning of basal bodies and the kinetoplast and the shortening of the flagella mark the culmination of intracellular amastigogenesis. Furthermore, we analyzed intracellular trypomastigogenesis, identifying discrete intermediate forms, including leaf-shaped stages and epimastigote-like forms, which suggests a complex differentiation process. Notably, we did not observe any dividing intracellular epimastigotes, indicating that these may be non-replicative forms within the host cell. Our detailed examination of amastigote cell division revealed semi-closed nuclear mitosis, with mitotic spindle formation independent of basal bodies. This study provides new insights into the morphological and cytoskeletal changes during the intracellular stages of T. cruzi, providing a model for understanding the dynamics of intracellular amastigogenesis and trypomastigogenesis. Full article
(This article belongs to the Special Issue Advances in Human Pathogenic Trypanosomatids)
Show Figures

Figure 1

14 pages, 5884 KiB  
Article
Temporal Changes in Nuclear Envelope Permeability during Semi-Closed Mitosis in Dictyostelium Amoebae
by Kristina Mitic, Irene Meyer, Ralph Gräf and Marianne Grafe
Cells 2023, 12(10), 1380; https://doi.org/10.3390/cells12101380 - 13 May 2023
Cited by 5 | Viewed by 2353
Abstract
The Amoebozoan Dictyostelium discoideum exhibits a semi-closed mitosis in which the nuclear membranes remain intact but become permeabilized to allow tubulin and spindle assembly factors to access the nuclear interior. Previous work indicated that this is accomplished at least by partial disassembly of [...] Read more.
The Amoebozoan Dictyostelium discoideum exhibits a semi-closed mitosis in which the nuclear membranes remain intact but become permeabilized to allow tubulin and spindle assembly factors to access the nuclear interior. Previous work indicated that this is accomplished at least by partial disassembly of nuclear pore complexes (NPCs). Further contributions by the insertion process of the duplicating, formerly cytosolic, centrosome into the nuclear envelope and nuclear envelope fenestrations forming around the central spindle during karyokinesis were discussed. We studied the behavior of several Dictyostelium nuclear envelope, centrosomal, and nuclear pore complex (NPC) components tagged with fluorescence markers together with a nuclear permeabilization marker (NLS-TdTomato) by live-cell imaging. We could show that permeabilization of the nuclear envelope during mitosis occurs in synchrony with centrosome insertion into the nuclear envelope and partial disassembly of nuclear pore complexes. Furthermore, centrosome duplication takes place after its insertion into the nuclear envelope and after initiation of permeabilization. Restoration of nuclear envelope integrity usually occurs long after re-assembly of NPCs and cytokinesis has taken place and is accompanied by a concentration of endosomal sorting complex required for transport (ESCRT) components at both sites of nuclear envelope fenestration (centrosome and central spindle). Full article
(This article belongs to the Collection Feature Papers in Cell Nuclei: Function, Transport and Receptors)
Show Figures

Graphical abstract

14 pages, 4843 KiB  
Article
Partial Disassembly of the Nuclear Pore Complex Proteins during Semi-Closed Mitosis in Dictyostelium discoideum
by Kristina Mitic, Marianne Grafe, Petros Batsios and Irene Meyer
Cells 2022, 11(3), 407; https://doi.org/10.3390/cells11030407 - 25 Jan 2022
Cited by 9 | Viewed by 7083
Abstract
Dictyostelium cells undergo a semi-closed mitosis, during which the nuclear envelope (NE) persists; however, free diffusion between the cytoplasm and the nucleus takes place. To permit the formation of the mitotic spindle, the nuclear envelope must be permeabilized in order to allow diffusion [...] Read more.
Dictyostelium cells undergo a semi-closed mitosis, during which the nuclear envelope (NE) persists; however, free diffusion between the cytoplasm and the nucleus takes place. To permit the formation of the mitotic spindle, the nuclear envelope must be permeabilized in order to allow diffusion of tubulin dimers and spindle assembly factors into the nucleus. In Aspergillus, free diffusion of proteins between the cytoplasm and the nucleus is achieved by a partial disassembly of the nuclear pore complexes (NPCs) prior to spindle assembly. In order to determine whether this is also the case in Dictyostelium, we analysed components of the NPC by immunofluorescence microscopy and live cell imaging and studied their behaviour during interphase and mitosis. We observed that the NPCs are absent from the contact area of the nucleoli and that some nucleoporins also localize to the centrosome and the spindle poles. In addition, we could show that, during mitosis, the central FG protein NUP62, two inner ring components and Gle1 depart from the NPCs, while all other tested NUPs remained at the NE. This leads to the conclusion that indeed a partial disassembly of the NPCs takes place, which contributes to permeabilisation of the NE during semi-closed mitosis. Full article
(This article belongs to the Special Issue Lipid and Protein Dynamics at the Nuclear Envelope)
Show Figures

Figure 1

Back to TopTop