Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = self-propelled electric sprayer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7140 KiB  
Article
Design of a Contact-Type Electrostatic Spray Boom System Based on Rod-Plate Electrode Structure and Field Experiments on Droplet Deposition Distribution
by Hao Sun, Changxi Liu, Yufei Li, Hang Shi, Shengxue Zhao, Miao Wu and Jun Hu
Agronomy 2024, 14(11), 2715; https://doi.org/10.3390/agronomy14112715 - 18 Nov 2024
Cited by 1 | Viewed by 1512
Abstract
Spraying is currently one of the main methods of pesticide application worldwide. It converts the pesticide solution into fine droplets through a sprayer, which then deposit onto target plants. Therefore, in the process of pesticide application, improving the effectiveness of spraying while minimizing [...] Read more.
Spraying is currently one of the main methods of pesticide application worldwide. It converts the pesticide solution into fine droplets through a sprayer, which then deposit onto target plants. Therefore, in the process of pesticide application, improving the effectiveness of spraying while minimizing or preventing crop damage has become a key issue. Combining the advantages of electrostatic spraying technology with the characteristics of ground boom sprayers, a contact-type electrostatic boom spraying system based on a rod–plate electrode structure was designed and tested on a self-propelled boom sprayer. The charging chamber was designed based on the characteristics of the rod–plate electrode and theoretical analysis. The reliability of the device was verified through COMSOL numerical simulations, charge-to-mass ratio, droplet size, and droplet size spectrum measurements, and a droplet size prediction model was established. The deposition characteristics in soybean fields were analyzed using the Box–Behnken experimental design method. The results showed that the rod–plate electrode structure demonstrated its superiority with a maximum spatial electric field of 2.31 × 106 V/m. When the spray pressure was 0.3 MPa and the charging voltage was 8 kV, the droplet size decreased by 26.6%, and the charge-to-mass ratio reached 2.88 mC/kg. Field experiments showed that when the charging voltage was 8 kV, the spray pressure was 0.3 MPa, the traveling speed was 7 km/h, and the number of deposited droplets was 8517. This study provides some basis for the application of electrostatic spraying technology in large-scale field operations. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

21 pages, 8868 KiB  
Article
Research on a Chassis Stability Control Method for High-Ground-Clearance Self-Propelled Electric Sprayers
by Lingxi Zhou, Chenwei Hu, Yuxiang Chen, Peijie Guo, Jinyi Liu, Yu Chen and Jiayu Cao
Appl. Sci. 2024, 14(17), 7734; https://doi.org/10.3390/app14177734 - 2 Sep 2024
Cited by 2 | Viewed by 1136
Abstract
In response to the complex working conditions and poor driving stability of high-clearance self-propelled sprayers, a nonlinear model of the chassis power system was established based on the independently controllable torque of each wheel of the developed electric sprayer. A layered-architecture chassis drive [...] Read more.
In response to the complex working conditions and poor driving stability of high-clearance self-propelled sprayers, a nonlinear model of the chassis power system was established based on the independently controllable torque of each wheel of the developed electric sprayer. A layered-architecture chassis drive control strategy was formulated, and a stability control framework comprising an instability judgment module, an upper controller, and a lower controller was constructed based on the analysis of the impact of the centroid slip angle, the yaw rate, and the wheel slip rate on driving stability. An ideal reference model was established based on the seven-degree-of-freedom model of the sprayer, and the current state of the sprayer body was determined using the instability judgment module. A drive anti-slip controller and a yaw moment controller based on fuzzy PID theory and sliding mode control theory were designed. Additionally, an optimal torque distribution algorithm was developed based on tire characteristics to rationally allocate drive torque to each wheel, ensuring the stability of the sprayer during operation. Simulation tests were conducted using MATLAB/Simulink to evaluate the sprayer under four different driving conditions during transport and field operations. The test results showed that the “SMC + optimal distribution” control method in the chassis stability control strategy reduced the maximum deviations of the yaw rate and centroid slip angle by an average of 89.5% and 13.6%, respectively, compared to no control. The wheel slip rate during straight driving was well maintained at around 15%, enhancing the driving stability of the sprayer. Full article
Show Figures

Figure 1

21 pages, 8759 KiB  
Article
Research and Experiment on Cruise Control of a Self-Propelled Electric Sprayer Chassis
by Lingxi Zhou, Chenwei Hu, Yuxiang Chen, Peijie Guo, Liwei Zhang, Jinyi Liu and Yu Chen
Agriculture 2024, 14(6), 902; https://doi.org/10.3390/agriculture14060902 - 7 Jun 2024
Cited by 2 | Viewed by 1150
Abstract
In order to address the issues of poor stability in vehicle speed and deteriorated spraying quality caused by changes in road slope and the decrease in overall mass due to liquid spraying, this study focuses on analyzing the structure and longitudinal dynamic characteristics [...] Read more.
In order to address the issues of poor stability in vehicle speed and deteriorated spraying quality caused by changes in road slope and the decrease in overall mass due to liquid spraying, this study focuses on analyzing the structure and longitudinal dynamic characteristics of a 4WID high ground clearance self-propelled electric sprayer. By utilizing MATLAB/Simulink software, three subsystems, namely, the inverse longitudinal dynamics model, torque distribution model, and motor model, are established. The model takes into account the effects of longitudinal driving resistance, slope, and vehicle roll angle on the distribution of loads among the four wheels during slope driving. A seven-degrees-of-freedom dynamic model is developed. A hierarchical control structure is designed, incorporating an upper-level PID controller and a lower-level fuzzy PID controller, to control the overall system. The control algorithms are tailored to the specific characteristics of the sprayer’s operation, and simulation experiments are conducted under the corresponding operating conditions. Building upon this, a sensor-equipped experimental platform is set up in the self-propelled sprayer manufactured by the team in the preliminary stage. Real vehicle tests are conducted in two scenarios: transition transportation and field operations, with the evaluation of the overall vehicle speed serving as the performance metric to validate the correctness of the model and the control theory. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

13 pages, 1822 KiB  
Article
Performance Evaluation of UAVs in Wheat Disease Control
by Qingqing Zhou, Songchao Zhang, Xinyu Xue, Chen Cai and Baokun Wang
Agronomy 2023, 13(8), 2131; https://doi.org/10.3390/agronomy13082131 - 14 Aug 2023
Cited by 4 | Viewed by 1804
Abstract
Plant protection unmanned aircraft vehicles (UAVs) were developed rapidly in China. The operation performances of different models of UAVs were different. This paper systematically studied droplet deposition distribution; pesticide-mixture utilization rate; operational efficiency; wheat-disease control efficacy; and a comprehensive score of three types [...] Read more.
Plant protection unmanned aircraft vehicles (UAVs) were developed rapidly in China. The operation performances of different models of UAVs were different. This paper systematically studied droplet deposition distribution; pesticide-mixture utilization rate; operational efficiency; wheat-disease control efficacy; and a comprehensive score of three types of UAVs, a boom sprayer, and a knapsack sprayer. The results showed the descending order of the droplet penetration rate of the pesticide application equipment (PAE) was boom sprayer; UAVs; and knapsack sprayer. The pesticide-mixture utilization rates of the UAVs and boom sprayer were more than 50% while that of the knapsack electric sprayer was only 27.8%. The UAVs’ average labor productivity was 5.75 ha per man-hour, which was slightly less than that of the boom sprayer and 21.3 times that of the knapsack sprayer. The control efficacy of each machine on wheat Fusarium head blight was more than 90%. The average performance comprehensive score of the UAVs was 0.812, which was slightly lower than the score of 0.929 for the 3WPZ-700 self-propelled boom sprayer but much higher than the score of 0.399 for the 3WBD-18 knapsack electric sprayer. The results clearly showed the potential of UAVs for improving the pesticide-mixture utilization rate and operational efficiency, as well as the wheat Fusarium head blight control efficacy. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

Back to TopTop