error_outline You can access the new MDPI.com website here. Explore and share your feedback with us.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = seeder bird infection model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4559 KB  
Article
Fecal Microbiota Transplantation Reduces Campylobacter jejuni Colonization in Young Broiler Chickens Challenged by Oral Gavage but Not by Seeder Birds
by Jinji Pang, Ashenafi Feyisa Beyi, Torey Looft, Qijing Zhang and Orhan Sahin
Antibiotics 2023, 12(10), 1503; https://doi.org/10.3390/antibiotics12101503 - 2 Oct 2023
Cited by 8 | Viewed by 3070
Abstract
Campylobacter spp., particularly C. jejuni and C. coli, are major food safety concerns, transmitted to humans mainly via contaminated poultry meat. In a previous study, we found that some commercial broiler farms consistently produced Campylobacter-free flocks while others consistently reared Campylobacter [...] Read more.
Campylobacter spp., particularly C. jejuni and C. coli, are major food safety concerns, transmitted to humans mainly via contaminated poultry meat. In a previous study, we found that some commercial broiler farms consistently produced Campylobacter-free flocks while others consistently reared Campylobacter-colonized flocks, and significant differences in the gut microbiota compositions between the two types of farm categories were revealed. Therefore, we hypothesized that gut microbiota influences Campylobacter colonization in poultry and that the microbiota from Campylobacter-free flocks may confer colonization resistance to Campylobacter in the chicken intestine. In this study, two fecal microbiota transplantation (FMT) trials were performed to test the hypothesis. Newly hatched chicks were given FMT via oral gavage of the cecal content of Campylobacter-free adult chickens (treatment groups) or PBS (control groups) before the feed consumption. Approximately two weeks after the FMT, the birds were challenged with C. jejuni either by oral gavage (trial 1) or by co-mingling with Campylobacter-colonized seeder birds (trial 2) to evaluate the potential protective effect of the FMT. Cecal contents were collected (3 times, 5 days apart) to determine the Campylobacter colonization levels via culture and microbiota compositions via 16S rRNA gene sequencing. FMT reduced cecal Campylobacter colonization significantly (log10 1.2–2.54 CFU/g) in trial 1 but not in trial 2, although FMT significantly impacted the diversity and compositions of the gut microbiota in both trials. Several genera, such as Butyricimonas, Parabacteroides, Parasutterella, Bilophila, Fournierella, Phascolarctobacterium, and Helicobacter, had increased abundance in the FMT-treated groups in both trials. Furthermore, Campylobacter abundance was found to be negatively correlated with the Escherichia and Ruminococcus_torques_group genera. These findings indicate that even though FMT with adult cecal microbiota can positively affect the subsequent development of the gut microbiota in young broilers, its inhibitory effect on Campylobacter colonization varies and appears to be influenced by the challenge models. Full article
Show Figures

Figure 1

15 pages, 1479 KB  
Article
Transmission of H9N2 Low Pathogenicity Avian Influenza Virus (LPAIV) in a Challenge-Transmission Model
by Sugandha Raj, Jake Astill, Nadiyah Alqazlan, Nitish Boodhoo, Douglas C. Hodgins, Éva Nagy, Samira Mubareka, Khalil Karimi and Shayan Sharif
Vaccines 2022, 10(7), 1040; https://doi.org/10.3390/vaccines10071040 - 28 Jun 2022
Cited by 9 | Viewed by 3230
Abstract
Migratory birds are major reservoirs for avian influenza viruses (AIV), which can be transmitted to poultry and mammals. The H9N2 subtype of AIV has become prevalent in poultry over the last two decades. Despite that, there is a scarcity of detailed information on [...] Read more.
Migratory birds are major reservoirs for avian influenza viruses (AIV), which can be transmitted to poultry and mammals. The H9N2 subtype of AIV has become prevalent in poultry over the last two decades. Despite that, there is a scarcity of detailed information on how this virus can be transmitted. The current study aimed to establish a direct contact model using seeder chickens infected with H9N2 AIV as a source of the virus for transmission to recipient chickens. Seeder chickens were inoculated with two different inoculation routes either directly or via the aerosol route. The results indicate that inoculation via the aerosol route was more effective at establishing infection compared to the direct inoculation route. Shedding was observed to be higher in aerosol-inoculated seeder chickens, with a greater percentage of chickens being infected at each time point. In terms of transmission, the recipient chickens exposed to the aerosol-inoculated seeder chickens had higher oral and cloacal virus shedding compared to the recipient chickens of the directly inoculated group. Furthermore, the aerosol route of infection resulted in enhanced antibody responses in both seeder and recipient chickens compared to the directly inoculated group. Overall, the results confirmed that the aerosol route is a preferred inoculation route for infecting seeder chickens in a direct contact transmission model. Full article
(This article belongs to the Special Issue Immunology and Vaccines against Avian Infectious Diseases)
Show Figures

Figure 1

Back to TopTop