Sign in to use this feature.

Years

Between: -

Subjects

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = seat inertial suspension

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5016 KiB  
Article
Performance Analysis of Seat Inertial Suspension Vibration Suppression and Energy Harvesting for Electric Commercial Vehicles
by Haiting Wang, Senlei Ma, Yu Peng and Changning Liu
World Electr. Veh. J. 2025, 16(4), 216; https://doi.org/10.3390/wevj16040216 - 5 Apr 2025
Viewed by 578
Abstract
This study examines the efficacy of a seat inertial suspension system in relation to vibration isolation and energy recovery in electric commercial vehicles. The research focuses on the structural modifications of the suspension system that arise from the incorporation of an inerter, a [...] Read more.
This study examines the efficacy of a seat inertial suspension system in relation to vibration isolation and energy recovery in electric commercial vehicles. The research focuses on the structural modifications of the suspension system that arise from the incorporation of an inerter, a novel vibration isolation component. A dynamic model of the seat inertial suspension is constructed, which includes two different structures consisting of components connected in parallel and in series. The analysis explores how the absorption of suspension parameters affects both seat comfort and the characteristics of energy harvesting. Furthermore, an optimal design methodology for the seat inertial suspension is proposed, seat comfort and energy recovery efficiency are also taken into consideration. The findings reveal that the parallel-structured seat inertial suspension system demonstrates superior overall performance. Specifically, it achieves a 36.6% reduction in seat acceleration, a 55.3% decrease in suspension working space, and an energy harvesting efficiency of 41.9%. The seat inertial suspension significantly improves occupant comfort by reducing seat acceleration, significantly reducing the amplitude of seat suspension movement, and recovering most of the seat suspension’s vibration energy, in comparison to traditional seat suspension systems. Full article
Show Figures

Figure 1

20 pages, 12256 KiB  
Article
Enhanced Seat Suspension Performance Through Positive Real Network Optimization and Skyhook Inertial Control
by Xiaofeng Yang, Rui Sun, Yi Yang, Yanling Liu, Jingchen Hong and Changning Liu
Machines 2025, 13(3), 222; https://doi.org/10.3390/machines13030222 - 8 Mar 2025
Cited by 2 | Viewed by 547
Abstract
To solve the low frequency vibration problem faced by heavy truck drivers, a positive real network inertial suspension structure combined with a skyhook inertial control strategy is adopted. This integrated approach effectively reduces low-frequency vibrations at the seat and human body levels. Specifically, [...] Read more.
To solve the low frequency vibration problem faced by heavy truck drivers, a positive real network inertial suspension structure combined with a skyhook inertial control strategy is adopted. This integrated approach effectively reduces low-frequency vibrations at the seat and human body levels. Specifically, this research aims to mitigate the acceleration experienced on the seat surface within the low-frequency range. Firstly, a human–seat dynamics model is established. Subsequently, based on the principles of network synthesis, the derivation of transfer functions for both first- and second-order systems is discussed, and the network parameters are also optimized. This paper further compares the optimization outcomes of first- and second-order skyhook seat inertial suspensions. An adaptive fuzzy sliding-mode controller (AFSMC) has been developed for an electromechanical inerter, ensuring it closely tracks optimal control performance. The findings demonstrate that the new suspension system achieves a 29.9% reduction in the root-mean-square value of seat surface acceleration and a 43.1% decrease in the road-bump peak acceleration compared to a conventional suspension system. The results show that the inertial suspension with skyhook inertial control is highly effective in completely suppressing seat surface acceleration within the low-frequency domain. Full article
(This article belongs to the Special Issue Advances in Vehicle Suspension System Optimization and Control)
Show Figures

Figure 1

Back to TopTop