Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = salad burnet

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1621 KB  
Article
Assessment of Chemical Composition and In Vitro Antioxidant, Antidiabetic, Anticholinesterase and Microbial Virulence-Quenching Effects of Salad Burnet (Sanguisorba minor L.) Harvested from Algeria
by Chahrazed Haouam, Sameh Boudiba, Alfred Ngenge Tamfu, Selcuk Kucukaydin, Karima Hanini, Haouaouchi Fatma Zohra, Soraya Hioun, Andreea Dediu Botezatu, Özgür Ceylan, Louiza Boudiba, Mehmet Emin Duru and Rodica Mihaela Dinica
Plants 2023, 12(24), 4134; https://doi.org/10.3390/plants12244134 - 11 Dec 2023
Cited by 12 | Viewed by 2470
Abstract
Sanguisorba minor is a medicinal vegetable used in seasoning desserts, juices, and beverages. An evaluation of the total flavonoid, phenolic, tannin and anthocyanin contents indicated that these classes of compounds are distributed variably in the different fractions. In summary, the HPLC-DAD analyses enabled [...] Read more.
Sanguisorba minor is a medicinal vegetable used in seasoning desserts, juices, and beverages. An evaluation of the total flavonoid, phenolic, tannin and anthocyanin contents indicated that these classes of compounds are distributed variably in the different fractions. In summary, the HPLC-DAD analyses enabled the identification and quantification of thirteen phenolic compounds in an ethyl acetate extract (EAE), nine in a dichloromethane extract (DCME), seven in an aqueous extract (AQE) and four in a butanol extract (BE). Rutin was the most abundant phenolic compound in the BE (278.4 ± 1.20 µg/g) and AQE (32.87 ± 0.23 µg/g) fractions, while apigenin was the most abundant in the DCME (84.75 ± 0.60 µg/g) and EAE (156.8 ± 0.95 µg/g) fractions. The presence of phenolic compounds in the fractions conferred good antioxidant capacity, especially the EAE and DCME fractions, which both exhibited higher antioxidant effects than BHA and α-tocopherol in DPPH and CUPRAC assays. Additionally, in the ABTS•+ assay, EAE (IC50 = 9.27 ± 0.33 µg/mL) was more active than α-tocopherol (IC50 = 35.50 ± 0.55 µg/mL), and BHA (IC50 = 12.70 ± 0.10 µg/mL). At 200 µg/mL, the fractions inhibited acetylcholinesterase and butyrylcholinesterase as well as α-amylase and α-glucosidase, indicating that they can slow neurodegeneration and hyperglycemia. Minimal inhibitory concentration (MIC) values ranged from 0.312 mg/mL to 1.25 mg/mL, and fractions showed good biofilm inhibition against Staphylococcus aureus and Escherichia coli. The extracts exhibited good violacein inhibition in Chromobacterium violaceum CV12472 and Chromobacterium violaceum CV026, despite the supply of external acyl-homoserine lactone to CV026. The antioxidant, quorum-sensing, antibiofilm and enzyme inhibition attributes indicate the potential for the application of S. minor as a food preservative. Full article
(This article belongs to the Special Issue Biological Activities of Plant Extracts II)
Show Figures

Figure 1

15 pages, 315 KB  
Article
Methane Emission and Milk Production from Jersey Cows Grazing Perennial Ryegrass–White Clover and Multispecies Forage Mixtures
by Cecilia Loza, Thorsten Reinsch, Ralf Loges, Friedhelm Taube, José Ignacio Gere, Christof Kluß, Mario Hasler and Carsten S. Malisch
Agriculture 2021, 11(2), 175; https://doi.org/10.3390/agriculture11020175 - 20 Feb 2021
Cited by 34 | Viewed by 12538
Abstract
Methane is a major constituent of greenhouse gas (GHG) emissions from ruminants, and mitigation strategies are needed to alleviate this negative environmental impact while maintaining the environmental and other benefits of grazing systems. Forages containing plant-specialized metabolites (PSM), particularly condensed tannins, may help [...] Read more.
Methane is a major constituent of greenhouse gas (GHG) emissions from ruminants, and mitigation strategies are needed to alleviate this negative environmental impact while maintaining the environmental and other benefits of grazing systems. Forages containing plant-specialized metabolites (PSM), particularly condensed tannins, may help reduce enteric methane (CH4) emissions. However, information on in vivo CH4 emissions from cows grazing mixtures that contain bioactive herbs is scarce. Accordingly, this study compared a binary mixture of perennial ryegrass (Lolium perenne) and white clover (Trifolium repens) against a diverse mixture of six additional species, including tannin-rich species like birdsfoot trefoil (Lotus corniculatus) and salad burnet (Sanguisorba minor), in a full-grazing dairy system. Enteric CH4 emissions were measured using the SF6 tracer technique. Cows grazing diverse mixtures increased their energy-corrected milk (ECM) yield by 4% (p < 0.001) compared with binary mixtures. However, CH4 emissions per kg ECM were also 11% greater for the diverse mixtures (p < 0.05). The very high feed quality and milk yield from both mixtures explained the low CH4 emissions recorded relative to the milk output. The addition of forbs did not provide additional benefits at these intensities, as they were maintained in low yield shares throughout. Full article
(This article belongs to the Special Issue Climate Change and Livestock: Impacts, Adaptation, and Mitigation)
15 pages, 2414 KB  
Article
Hydroponically Grown Sanguisorba minor Scop.: Effects of Cut and Storage on Fresh-Cut Produce
by Costanza Ceccanti, Marco Landi, Gabriele Rocchetti, Maria Begoña Miras Moreno, Luigi Lucini, Luca Incrocci, Alberto Pardossi and Lucia Guidi
Antioxidants 2019, 8(12), 631; https://doi.org/10.3390/antiox8120631 - 9 Dec 2019
Cited by 19 | Viewed by 4195
Abstract
Wild edible plants have been used in cooking since ancient times. Recently, their value has improved as a result of the scientific evidence for their nutraceutical properties. Sanguisorba minor Scop. (salad burnet) plants were hydroponically grown and two consecutive cuts took place at [...] Read more.
Wild edible plants have been used in cooking since ancient times. Recently, their value has improved as a result of the scientific evidence for their nutraceutical properties. Sanguisorba minor Scop. (salad burnet) plants were hydroponically grown and two consecutive cuts took place at 15 (C1) and 30 (C2) days after sowing. An untargeted metabolomics approach was utilized to fingerprint phenolics and other health-related compounds in this species; this approach revealed the different effects of the two cuts on the plant. S. minor showed a different and complex secondary metabolite profile, which was influenced by the cut. In fact, flavonoids increased in leaves obtained from C2, especially flavones. However, other secondary metabolites were downregulated in leaves from C2 compared to those detected in leaves from C1, as evidenced by the combination of the variable important in projections (VIP score > 1.3) and the fold-change (FC > 2). The storage of S. minor leaves for 15 days as fresh-cut products did not induce significant changes in the phenolic content and antioxidant capacity, which indicates that the nutraceutical value was maintained. The only difference evidenced during storage was that leaves obtained from C2 showed a lower constitutive content of nutraceutical compounds than leaves obtained from C1; except for chlorophylls and carotenoids. In conclusion, the cut was the main influence on the modulation of secondary metabolites in leaves, and the effects were independent of storage. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Figure 1

Back to TopTop