Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = rubbersheeting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4499 KiB  
Article
Towards Topological Geospatial Conflation: An Optimized Node-Arc Conflation Model for Road Networks
by Zhen Lei and Ting L. Lei
ISPRS Int. J. Geo-Inf. 2024, 13(1), 15; https://doi.org/10.3390/ijgi13010015 - 31 Dec 2023
Cited by 5 | Viewed by 2910
Abstract
Geospatial data conflation is the process of identifying and merging the corresponding features in two datasets that represent the same objects in reality. Conflation is needed in a wide range of geospatial analyses, yet it is a difficult task, often considered too unreliable [...] Read more.
Geospatial data conflation is the process of identifying and merging the corresponding features in two datasets that represent the same objects in reality. Conflation is needed in a wide range of geospatial analyses, yet it is a difficult task, often considered too unreliable and costly due to various discrepancies between GIS data sources. This study addresses the reliability issue of computerized conflation by developing stronger optimization-based conflation models for matching two network datasets with minimum discrepancy. Conventional models match roads on a feature-by-feature basis. By comparison, we propose a new node-arc conflation model that simultaneously matches road-center lines and junctions in a topologically consistent manner. Enforcing this topological consistency increases the reliability of conflation and reduces false matches. Similar to the well-known rubber-sheeting method, our model allows for the use of network junctions as “control” points for matching network edges. Unlike rubber sheeting, the new model is automatic and matches all junctions (and edges) in one pass. To the best of our knowledge, this is the first optimized conflation model that can match nodes and edges in one model. Computational experiments using six road networks in Santa Barbara, CA, showed that the new model is selective and reduces false matches more than existing optimized conflation models. On average, it achieves a precision of 94.7% with over 81% recall and achieves a 99.4% precision when enhanced with string distances. Full article
Show Figures

Figure 1

30 pages, 9579 KiB  
Review
A Review for the Euler Number Computing Problem
by Bin Yao, Haochen He, Shiying Kang, Yuyan Chao and Lifeng He
Electronics 2023, 12(21), 4406; https://doi.org/10.3390/electronics12214406 - 25 Oct 2023
Cited by 5 | Viewed by 2155
Abstract
In a binary image, the Euler number is a crucial topological feature that holds immense significance in image understanding and image analysis owing to its invariance under scaling, rotation, or any arbitrary rubber-sheet transformation of images. This paper focuses on the Euler number [...] Read more.
In a binary image, the Euler number is a crucial topological feature that holds immense significance in image understanding and image analysis owing to its invariance under scaling, rotation, or any arbitrary rubber-sheet transformation of images. This paper focuses on the Euler number computing problem in a binary image. The state-of-the-art Euler number computing algorithms are reviewed, which obtain the Euler number through different techniques, such as definition, features of binary images, and special data structures representing forms of binary images, and we explain the main principles and strategies of the algorithms in detail. Afterwards, we present the experimental results to bring order of the prevailing Euler number computing algorithms in 8-connectivity cases. Then, we discuss both the parallel implementation and the hardware implementation of algorithms for calculating the Euler number and present the algorithm extension for 3D image Euler number computation. Lastly, we aim to outline forthcoming efforts concerning the computation of the Euler number. Full article
(This article belongs to the Topic Computer Vision and Image Processing)
Show Figures

Figure 1

40 pages, 21218 KiB  
Article
Automated Conflation of Digital Elevation Model with Reference Hydrographic Lines
by Timofey E. Samsonov
ISPRS Int. J. Geo-Inf. 2020, 9(5), 334; https://doi.org/10.3390/ijgi9050334 - 20 May 2020
Cited by 9 | Viewed by 7606
Abstract
Combining misaligned spatial data from different sources complicates spatial analysis and creation of maps. Conflation is a process that solves the misalignment problem through spatial adjustment or attribute transfer between similar features in two datasets. Even though a combination of digital elevation model [...] Read more.
Combining misaligned spatial data from different sources complicates spatial analysis and creation of maps. Conflation is a process that solves the misalignment problem through spatial adjustment or attribute transfer between similar features in two datasets. Even though a combination of digital elevation model (DEM) and vector hydrographic lines is a common practice in spatial analysis and mapping, no method for automated conflation between these spatial data types has been developed so far. The problem of DEM and hydrography misalignment arises not only in map compilation, but also during the production of generalized datasets. There is a lack of automated solutions which can ensure that the drainage network represented in the surface of generalized DEM is spatially adjusted with independently generalized vector hydrography. We propose a new method that performs the conflation of DEM with linear hydrographic data and is embeddable into DEM generalization process. Given a set of reference hydrographic lines, our method automatically recognizes the most similar paths on DEM surface called counterpart streams. The elevation data extracted from DEM is then rubbersheeted locally using the links between counterpart streams and reference lines, and the conflated DEM is reconstructed from the rubbersheeted elevation data. The algorithm developed for extraction of counterpart streams ensures that the resulting set of lines comprises the network similar to the network of ordered reference lines. We also show how our approach can be seamlessly integrated into a TIN-based structural DEM generalization process with spatial adjustment to pre-generalized hydrographic lines as additional requirement. The combination of the GEBCO_2019 DEM and the Natural Earth 10M vector dataset is used to illustrate the effectiveness of DEM conflation both in map compilation and map generalization workflows. Resulting maps are geographically correct and are aesthetically more pleasing in comparison to a straightforward combination of misaligned DEM and hydrographic lines without conflation. Full article
Show Figures

Figure 1

Back to TopTop