Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = rowan berries

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2769 KiB  
Article
Utilizing Natural Deep Eutectic Solvents (NADESs) for Sustainable Phytonutrient Recovery: Optimization and Multi-Matrix Extraction of Bioactive Compounds
by Ainur Makarova, Ceylin Özten and Bartłomiej Zieniuk
Appl. Sci. 2025, 15(9), 4843; https://doi.org/10.3390/app15094843 - 27 Apr 2025
Viewed by 670
Abstract
Bioactive phytochemicals, such as polyphenols, play vital roles in human health, but conventional extraction methods rely on hazardous solvents. This study establishes natural deep eutectic solvents (NADESs) as versatile and environmentally friendly alternatives for recovering a variety of bioactive compounds from plant materials. [...] Read more.
Bioactive phytochemicals, such as polyphenols, play vital roles in human health, but conventional extraction methods rely on hazardous solvents. This study establishes natural deep eutectic solvents (NADESs) as versatile and environmentally friendly alternatives for recovering a variety of bioactive compounds from plant materials. Five choline chloride-based NADESs were evaluated for their effectiveness in extracting betalains (from beetroot), carotenoids (from carrot and sweet potato), anthocyanins (from chokeberry pomace and red onion), and polyphenols (from Lonicera japonica flowers, hop cones, rowan berries, and spent coffee grounds). Notably, NADES2 outperformed water in betalain recovery (179.86 mg of betanin/100 g of beetroot), while NADES4 (choline chloride-urea, 1:2 molar ratio) matched the polyphenol extraction efficiency of ethanol. Using L. japonica flowers as a model for optimization, Response Surface Methodology (RSM) identified the solvent ratio and temperature as critical extraction parameters, using high ratios (12:1–15:1 v/w) and moderate heat (55–75 °C) to maximize recovery. NADES4 emerged as a high-performing solvent, achieving a total phenolic content (TPC) of 75.94 mg chlorogenic acid/g and antioxidant activity of 451.00 µmol Trolox/g under the following conditions: 60% aqueous dilution, 15:1 solvent ratio, and 80 °C, 30 min. These findings highlight NADESs as a green, tunable solvent system for phytochemical extraction across plant species, offering enhanced efficiency, reduced environmental impact, and alignment with sustainable practices. Full article
Show Figures

Figure 1

17 pages, 2022 KiB  
Article
Microbial Growth Inhibition Effect, Polyphenolic Profile, and Antioxidative Capacity of Plant Powders in Minced Pork and Beef
by Kadrin Meremäe, Linda Rusalepp, Alar Sünter, Piret Raudsepp, Dea Anton, Mihkel Mäesaar, Terje Elias, Tõnu Püssa and Mati Roasto
Foods 2024, 13(19), 3117; https://doi.org/10.3390/foods13193117 - 29 Sep 2024
Cited by 1 | Viewed by 1176
Abstract
Consumer interest in healthier meat products has grown in recent years. Therefore, the use of plant powders as natural preservatives in the composition of pork and beef products could be an alternative to traditional meat products. This study aimed to assess the effect [...] Read more.
Consumer interest in healthier meat products has grown in recent years. Therefore, the use of plant powders as natural preservatives in the composition of pork and beef products could be an alternative to traditional meat products. This study aimed to assess the effect of different powders, such as blackcurrant, chokeberry, rowan berries, apple, tomato, garlic, and rhubarb, on the microbial growth dynamics in minced pork and beef during refrigerated storage. The total counts of aerobic microorganisms, Pseudomonas spp., yeasts, and molds were examined according to ISO methods. The polyphenolic profiles of plant powders and supplemented minced pork and beef samples were determined by HPLC-MS. The antioxidative capacity of the plant powders was analyzed using a spectrophotometric method. The findings of the study revealed that supplemented minced pork and beef samples had similar polyphenolic profiles and microbial growth dynamics. The highest antioxidative capacity was observed for anthocyanin-rich berry powders. In both minced pork and beef, rhubarb powder was the most effective plant material for inhibiting microbial growth, followed by blackcurrant pomace powder. In conclusion, all of the plant powders used in the present study can be used for the valorization of minced meat products, providing both antimicrobial and antioxidant effects. Full article
(This article belongs to the Special Issue Fruit By-Products and Their Applications in Food Industry)
Show Figures

Figure 1

13 pages, 946 KiB  
Article
In Vitro Antibacterial and Antioxidative Activity and Polyphenolic Profile of the Extracts of Chokeberry, Blackcurrant, and Rowan Berries and Their Pomaces
by Kadrin Meremäe, Piret Raudsepp, Linda Rusalepp, Dea Anton, Uko Bleive and Mati Roasto
Foods 2024, 13(3), 421; https://doi.org/10.3390/foods13030421 - 28 Jan 2024
Cited by 5 | Viewed by 1954
Abstract
The chemical composition of berries and berry pomaces is diverse, containing polyphenolic components that may have both antibacterial and antioxidative properties. In the present study, in vitro antibacterial effect of the extracts of chokeberry, blackcurrant, and rowan berries and berry pomaces against L. [...] Read more.
The chemical composition of berries and berry pomaces is diverse, containing polyphenolic components that may have both antibacterial and antioxidative properties. In the present study, in vitro antibacterial effect of the extracts of chokeberry, blackcurrant, and rowan berries and berry pomaces against L. monocytogenes, S. aureus, E. coli, and C. jejuni was studied. In addition, the polyphenolic profile and antioxidant activity of these extracts were investigated. The polyphenolic profiles in the aqueous and 30% ethanolic extracts were determined chromatographically by HPLC-MS, and the total polyphenol content was estimated spectrophotometrically by HPLC-DAD-UV. The minimal inhibition concentrations (MICs) of the extracts against tested bacteria were determined by the broth microdilution method. The content of total polyphenols was highest and good antioxidative properties of the extracts were determined for chokeberry and blackcurrant berries and their pomaces. The highest proportions of total quercetin derivatives and anthocyanins were found in the extracts of chokeberry berry/pomace and blackcurrant berry/pomace, respectively. The sensitivity of tested microbes to the extracts of berries and berry pomaces was as follows: S. aureus > L. monocytogenes > E. coli and C. jejuni. In vitro antibacterial activity of tested extracts depended on the extraction solvent, mainly for the ethanolic extracts. Findings suggest that chokeberry and blackcurrant berries and their pomaces can be used as a good source of polyphenols with antioxidative properties, and they also have antibacterial activity against some foodborne pathogenic bacteria. It is important that the valuable compounds are extracted from juice press residues before their disposal. Full article
(This article belongs to the Special Issue Plant Extracts as Functional Food Ingredients)
Show Figures

Figure 1

16 pages, 3483 KiB  
Article
Response of Rowan Berry (Sorbus redliana) Shoot Culture to Slow Growth Storage Conditions
by Nóra Mendler-Drienyovszki and Katalin Magyar-Tábori
Plants 2023, 12(6), 1287; https://doi.org/10.3390/plants12061287 - 12 Mar 2023
Cited by 2 | Viewed by 2212
Abstract
Slow growth storage can preserve the genetic resources of endangered species such as those of genus Sorbus. Our aim was to study the storability of rowan berry in vitro cultures, their morpho-physiological changes, and regeneration ability after different storage conditions (4 ± [...] Read more.
Slow growth storage can preserve the genetic resources of endangered species such as those of genus Sorbus. Our aim was to study the storability of rowan berry in vitro cultures, their morpho-physiological changes, and regeneration ability after different storage conditions (4 ± 0.5 °C, dark; and 22 ± 2 °C, 16/8 h light/dark). The cold storage lasted for 52 weeks, and observations were made every four weeks. Cultures showed 100% survival under cold storage, and those taken from the storage showed 100% regeneration capacity after the passages. A dormancy period lasting about 20 weeks was observed, followed by intensive shoot growth until the 48th week, which led to the exhaustion of the cultures. The changes could be traced to the reduction of the chlorophyll content and the Fv/Fm value, as well as in the discoloration of the lower leaves and the appearance of necrotic tissues. Long, etiolated shoots (89.3 mm) were obtained at the end of cold storage. Shoot cultures stored in a growth chamber as control (22 ± 2 °C, 16/8 h light/dark) senesced and died after 16 weeks. Explants from stored shoots were subcultured for four weeks. The number and length of newly developed shoots were significantly higher on explants from cold storage compared to those from control cultures if the storage was longer than one week. Full article
Show Figures

Figure 1

18 pages, 4521 KiB  
Article
Rowan Berries: A Potential Source for Green Synthesis of Extremely Monodisperse Gold and Silver Nanoparticles and Their Antimicrobial Property
by Priyanka Singh and Ivan Mijakovic
Pharmaceutics 2022, 14(1), 82; https://doi.org/10.3390/pharmaceutics14010082 - 29 Dec 2021
Cited by 25 | Viewed by 3668
Abstract
Rowanberries (Sorbus aucuparia) are omnipresent in Europe. The medicinal importance of rowanberries is widely known and corresponds to the active ingredients present in the fruits, mainly polyphenols, carotenoids, and organic acids. In the current study, we explored rowanberries for the reduction [...] Read more.
Rowanberries (Sorbus aucuparia) are omnipresent in Europe. The medicinal importance of rowanberries is widely known and corresponds to the active ingredients present in the fruits, mainly polyphenols, carotenoids, and organic acids. In the current study, we explored rowanberries for the reduction of gold and silver salts into nanoparticles. Rowanberries-mediated gold nanoparticles (RB-AuNPs) formed within 5 s at room temperature, and silver nanoparticles (RB-AgNPs) formed in 20 min at 90 °C. The produced nanoparticles were thoroughly characterized by UV-Vis spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray (EDX), transmission electron microscopy (TEM), dynamic light scattering (DLS), single-particle inductively coupled plasma–mass spectrometry (sp-ICP-MS), thermogravimetric analysis (TGA), Fourier transform-infrared spectroscopy (FT-IR) and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF). The characterization confirmed that the nanoparticles are highly monodisperse, spherical, stable over long periods, and exhibit a high negative zeta potential values. The produced RB-AuNPs and RB-AgNPs were 90–100 nm and 20–30 nm in size with a thick biological corona layer surrounding them, providing extreme stability but lowering the antimicrobial activity. The antimicrobials study of RB-AgNPs revealed that the nanoparticles have antimicrobial potential with an MBC value of 100 µg/mL against P. aeruginosa and 200 µg/mL against E. coli. Full article
(This article belongs to the Special Issue Biofilm Busting Strategies for Eradicating Infections)
Show Figures

Figure 1

14 pages, 475 KiB  
Article
The Influence of Temperature, Storage Conditions, pH, and Ionic Strength on the Antioxidant Activity and Color Parameters of Rowan Berry Extracts
by Elena Cristea, Aliona Ghendov-Mosanu, Antoanela Patras, Carmen Socaciu, Adela Pintea, Cristina Tudor and Rodica Sturza
Molecules 2021, 26(13), 3786; https://doi.org/10.3390/molecules26133786 - 22 Jun 2021
Cited by 27 | Viewed by 4053
Abstract
Recent trends in the food industry combined with novel methods in agriculture could transform rowan into a valuable raw material with potential technological applications. Thus, the aim of this research was to investigate the content of bioactive compounds in its fruits and to [...] Read more.
Recent trends in the food industry combined with novel methods in agriculture could transform rowan into a valuable raw material with potential technological applications. Thus, the aim of this research was to investigate the content of bioactive compounds in its fruits and to assess the color and antioxidant stability of the extracts prepared from such fruits during various thermal treatments and at different pH and ionic strength values. Various spectrophotometric methods, HPLC, and capillary electrophoresis were used to quantify the concentrations of bioactive compounds—polyphenols, carotenoids, organic acids, and to assess antioxidant activity and color. The results show that rowan berries contain circa 1.34–1.47 g/100 g of polyphenols among which include catechin, epicatechin, ferulic acid methyl ester, procyanidin B1, etc.; ca 21.65 mg/100 g of carotenoids including zeaxanthin, β-cryptoxanthin, all-trans-β-carotene, and various organic acids such as malic, citric, and succinic, which result in a high antioxidant activity of 5.8 mmol TE/100 g. Results also showed that antioxidant activity exhibited high stability when the extract was subjected to various thermal treatments, pHs, and ionic strengths, while color was mainly impacted negatively when a temperature of 100 °C was employed. This data confirms the technological potential of this traditional, yet often overlooked species. Full article
(This article belongs to the Special Issue Plant Extracts: Technologies, Characterizations and Applications)
Show Figures

Figure 1

Back to TopTop