Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = rolling thin-film oven (RTFO)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 12970 KiB  
Article
The Effects of Reclaimed Asphalt Pavement Modification on the Delta Tc Parameter for PG58-XX and PG64-XX Asphalt Binders
by Masoud Darabi and Bisher Matalkeh
Constr. Mater. 2025, 5(1), 17; https://doi.org/10.3390/constrmater5010017 - 18 Mar 2025
Viewed by 356
Abstract
The use of reclaimed asphalt pavement (RAP) in asphalt mixtures has increased due to its economic and environmental benefits. However, RAP integration can negatively impact the durability and performance of asphalt binders, particularly at low temperatures. This study evaluates the effects of RAP [...] Read more.
The use of reclaimed asphalt pavement (RAP) in asphalt mixtures has increased due to its economic and environmental benefits. However, RAP integration can negatively impact the durability and performance of asphalt binders, particularly at low temperatures. This study evaluates the effects of RAP modification on the ΔTC parameter, a key indicator of binder brittleness and resistance to non-load-related cracking, focusing on PG XX-34 and PG XX-28 grades commonly used in Kansas. Laboratory testing was conducted on virgin and RAP binders subjected to Rolling Thin-Film Oven (RTFO) and Pressure Aging Vessel (PAV) aging. Blended binders were prepared with RAP replacement levels of 15%, 25%, and 40%. The critical temperatures TC,m, TC,S, and ΔTC values were calculated using data from Bending Beam Rheometer (BBR) testing. The results showed that increasing RAP content generally led to more negative ΔTC values, indicating reduced relaxation capacity and higher susceptibility to thermal cracking. RAP source variability also affected performance, with some sources causing more severe deterioration than others. These findings highlight the limitations of conventional linear blending assumptions and underscore the need for improved RAP characterization in binder selection. The study recommends limiting RAP replacement to 25% unless the RAP source demonstrates favorable properties, incorporating ΔTC thresholds (−2.5 °C and −5.0 °C) into binder specifications, and further investigating RAP–virgin binder interactions to enhance long-term pavement performance. The findings support the potential adoption of ΔTC as a specification criterion for binder evaluation, helping agencies like the Kansas Department of Transportation (KDOT) balance binder durability and RAP use. Full article
(This article belongs to the Special Issue Advances in Sustainable Construction Materials for Asphalt Pavements)
Show Figures

Figure 1

11 pages, 4145 KiB  
Article
Asphalt-Binder Mixtures Evaluated by T1 NMR Relaxometry
by Rebecca M. Herndon, Jay Balasubramanian, Magdy Abdelrahman and Klaus Woelk
Physchem 2024, 4(3), 285-295; https://doi.org/10.3390/physchem4030020 - 13 Aug 2024
Cited by 2 | Viewed by 1599
Abstract
Asphalt pavements make up a majority of the essential transportation systems in the US. Asphalt mixtures age and degrade over time, reducing the pavement performance. Pavement performance critically depends on the aging of asphalt binder. The aging of asphalt binder during construction is [...] Read more.
Asphalt pavements make up a majority of the essential transportation systems in the US. Asphalt mixtures age and degrade over time, reducing the pavement performance. Pavement performance critically depends on the aging of asphalt binder. The aging of asphalt binder during construction is traditionally modeled by rolling thin film oven (RTFO) testing, while aging during service life is modeled by pressure aging vessel (PAV) testing. Comparing these models to the aging of binders in actual pavements is limited because, to be used for current testing, binders must be separated from the pavement’s aggregate by solvent extraction. Solvent extraction will, at least in part, compromise the structural integrity of asphalt binder samples. Spin-lattice NMR relaxometry has been shown to nondestructively evaluate asphalt properties in situ through the analysis of hydrogen environments. The molecular mobility of hydrogen environments and with it the stiffness of asphalt binder samples can be determined by characteristic T1 relaxation times, indicating the complexity of asphalt-binder aging. In this study, two laboratory-generated asphalt mixtures, a failed field sample, and several laboratory-aged binder samples are compared by NMR relaxometry. NMR relaxometry was found to be able to differentiate between asphalt samples based on their binder percentage. According to the relaxometry findings, the RTFO binder aging compared favorably to the 6% laboratory-mixed sample. The PAV aging, however, did not compare well to the relaxometry results found for the field-aged sample. The amount of aggregate was found to have an influence on the relaxation times of the binder in the mixed samples and an inverse proportionality of the binder content to the primary NMR relaxation time was detected. It is concluded that molecular water present in the pores of the aggregate material gives rise to such a relationship. The findings of this study lay the foundation for nondestructive asphalt performance evaluation by NMR relaxometry. Full article
(This article belongs to the Section Solid-State Chemistry and Physics)
Show Figures

Figure 1

21 pages, 5042 KiB  
Article
Enhancing Asphalt Performance and Its Long-Term Sustainability with Nano Calcium Carbonate and Nano Hydrated Lime
by Amjad H. Albayati, Aliaa F. Al-Ani, Juliana Byzyka, Mazen Al-Kheetan and Mujib Rahman
Sustainability 2024, 16(4), 1507; https://doi.org/10.3390/su16041507 - 9 Feb 2024
Cited by 13 | Viewed by 2352
Abstract
Nanomaterials enhance the performance of both asphalt binders and asphalt mixtures. They also improve asphalt durability, which reduces resource consumption and environmental impact in the long term associated with the production and transportation of asphalt materials. Thus, this paper studies the effectiveness of [...] Read more.
Nanomaterials enhance the performance of both asphalt binders and asphalt mixtures. They also improve asphalt durability, which reduces resource consumption and environmental impact in the long term associated with the production and transportation of asphalt materials. Thus, this paper studies the effectiveness of Nano Calcium Carbonate (Nano CaCO3) and Nano Hydrated Lime (NHL) as modifiers and examines their impact on ranges from 0% to 10% through comprehensive laboratory tests. Softening point, penetration, storage stability, viscosity, and mass loss due to short-term aging using the Rolling Thin Film Oven Test (RTFO) were performed on asphalt binders. Results indicated a significant improvement in binder stiffness, particularly at 4% Nano CaCO3 and 6% NHL content by weight. Dynamic Shear Rheometer (DSR) tests further revealed substantial improvements in rutting resistance, with NHL exhibiting superior high-temperature stability and a notable increase in the rutting factor. Marshall stability tests on asphalt concrete (AC) mixtures showed a 22.3% increase in stability with 6% NHL by weight, surpassing the 20.2% improvement observed with Nano CaCO3 and indicating enhanced load-bearing capacity. The resilient modulus of the mixtures consistently increased with the addition of NHL, suggesting improved durability in rutting. Moisture susceptibility tests revealed that NHL significantly enhances moisture resistance, exceeding the 80% TSR benchmark at just 2% content by weight and reaching an impressive 94.6% at 10% content by weight. In contrast, Nano CaCO3 demonstrated a more gradual improvement, achieving an 88.2% TSR at 10% content. Furthermore, permanent deformation analysis indicated a 68.64% improvement in rutting resistance with 10% NHL content by weight, exceeding Nano CaCO3’s improvement rate. Optimal fatigue resistance was achieved at 4% for Nano CaCO3 and 6% for NHL by weight, with respective CT index improvements of 30% and 35.4%, showing NHL’s consistent benefits across various nanomaterial contents. Overall, the study suggests that both Nano CaCO3 and NHL positively impact asphalt performance, with NHL offering more pronounced benefits across a range of properties. These findings provide valuable insights for pavement engineers and underscore NHL’s potential as an effective additive in asphalt mixture design. Real-world applications and validations are essential for a comprehensive understanding of these nanomaterials in practical pavement engineering scenarios. Full article
Show Figures

Figure 1

18 pages, 2223 KiB  
Article
Evaluating the Ageing Sensitivity of the Asphalt Binder via Distinct Ageing Methods
by Vineesh Vijayan, Konstantinos Mantalovas, Francesco Acuto and Gaetano Di Mino
Infrastructures 2023, 8(11), 163; https://doi.org/10.3390/infrastructures8110163 - 17 Nov 2023
Cited by 5 | Viewed by 2821
Abstract
Asphalt binder is a crucial component of asphalt pavements that undergoes ageing over time, which can result in the reduced performance and deterioration of pavements. Consequently, artificial ageing methods play a significant role in providing valuable insights into the ageing behaviour and long-term [...] Read more.
Asphalt binder is a crucial component of asphalt pavements that undergoes ageing over time, which can result in the reduced performance and deterioration of pavements. Consequently, artificial ageing methods play a significant role in providing valuable insights into the ageing behaviour and long-term performance of asphalt binders. However, a consensus on the most effective method for simulating ageing behaviour remains elusive, leading to disparities in the outcomes across different research studies. To address this issue, the study utilises two thermo-oxidative ageing approaches, one focusing on the binder itself and another on the loose asphalt mixture. The study investigates the effect of these ageing methods on the behaviour of asphalt binder using physical, rheological, and chemical characterisation. For the binder ageing method, a rolling thin film oven (RTFO) and a pressure ageing vessel (PAV) were utilised, whereas the loose asphalt mixture ageing was performed in an oven at 95 °C for various durations. The results indicated that the ageing trend differed between the two oxidative ageing approaches as the ageing duration increased. However, by employing an ageing sensitivity index, comparable rheological properties were observed between the binders aged using the PAV for 20 h and the loose asphalt mixture for 5 days. The Fourier Transform Infrared (FTIR) spectroscopy analysis revealed that the ageing methods influenced the functional groups associated with ageing in distinct ways, even though they exhibited similar rheological behaviour. Overall, this study provides a comprehensive understanding of different thermo-oxidative ageing approaches, their correlation, and their relevance to the studied field-aged binders. Full article
Show Figures

Figure 1

15 pages, 1750 KiB  
Article
Simulation of the Time Needed for Long-Term Asphalt Ageing in the Rolling Thin Film Oven Relative to That of the Pressure Ageing Vessel
by Yuri Mello Müller de Oliveira, Poliana Tonieto Cittadella, Luciana Rohde and Liseane Padilha Thives
Materials 2023, 16(22), 7081; https://doi.org/10.3390/ma16227081 - 8 Nov 2023
Cited by 2 | Viewed by 1117
Abstract
Rheological test standards require asphalt samples, both original and under ageing conditions. The most common laboratory equipment in specifications for short-term and long-term ageing simulation tests are the rolling thin film oven (RTFO) and the pressure ageing vessel (PAV). However, the cost of [...] Read more.
Rheological test standards require asphalt samples, both original and under ageing conditions. The most common laboratory equipment in specifications for short-term and long-term ageing simulation tests are the rolling thin film oven (RTFO) and the pressure ageing vessel (PAV). However, the cost of acquiring PAV and the duration of long-term ageing tests can be a limiting factor. This work aimed to establish the equivalent time of the long-term ageing test in the RTFO that corresponds to the PAV. For this, the Brazilian asphalt PEN 50/70, specified by penetration, was aged at different times (85, 170, 255, and 340 min) in the RTFO at the standard temperature (163 °C). For each time, using a dynamic shear rheometer (DSR), tests such as Multiple Stress Creep Recovery (MSCR) and Linear Amplitude Sweep (LAS) were performed, and the rheological properties (complex modulus (G*) and phase angle (δ)) were measured. The same tests were conducted on the samples aged in the long term and in the PAV. The test parameters obtained from applying different times while using the RTFO were compared with the PAV results, and the equivalent time was settled through linear regression, resulting in 300 min. In order to confirm the equivalent time, samples aged in the RTFO for 300 min were assessed using the same rheological tests, and the parameters were compared to those obtained after PAV ageing. At the equivalent time, the difference between RTFO and the PAV for the rutting parameter (G*/sinδ, 58 °C) was 6%, while for the fatigue parameter (G*.sinδ, 19 °C), the difference was 1.0%. The MSCR non-recoverable creep compliance parameter differences, considering stress levels of 0.1 kPa and 3.2 kPa, were 9.7% and 11.7%, respectively. For the fatigue life obtained in the LAS test at strain levels of 1.25% and 2.5%, the difference between RTFO and PAV, at the equivalent time, was 7.6% and 7.8%, respectively. For the Brazilian unmodified asphalt PEN 50/70 and parameters evaluated in this work, 300 min is the equivalent time that simulates long-term ageing in the RTFO. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

19 pages, 3494 KiB  
Article
Thermal Aging Degradation of High-Viscosity Asphalt Based on Rheological Methods
by Siyue Zhu, Xiantao Qin, Menghui Liao, Yuxi Ma, Hao Xu, Jingyi Chen and Haobo Gao
Materials 2023, 16(18), 6250; https://doi.org/10.3390/ma16186250 - 17 Sep 2023
Cited by 6 | Viewed by 1524
Abstract
With the acceleration of the construction of sponge cities in China, porous asphalt pavement (PA) is has been widely used. High-viscosity asphalt (HVA) is the core material in building PA because it has good rheology properties, which can provide good raveling and rutting [...] Read more.
With the acceleration of the construction of sponge cities in China, porous asphalt pavement (PA) is has been widely used. High-viscosity asphalt (HVA) is the core material in building PA because it has good rheology properties, which can provide good raveling and rutting resistance. However, due to the open-graded structure of PA, HVA was more susceptible to rapid aging, which significantly affects the durability of PA. To investigate the thermal aging effect on the rheological properties of self-modified HVA (SHVA), five types of asphalts were aged using a rolling thin film oven (RTFO) and pressure aging vessel (PAV). Then, rheological tests were adopted, such as temperature sweep test (TS), repeated creep and recovery test (RCR), and bending beam rheometer test (BBR). The results indicate that during the aging process, the oxidation-induced hardening effect of neat asphalt and the degradation-induced softening effect of the modifier changes the rheology properties of HVA significantly. As the aging progresses, the contribution of the modifiers of HVA to anti-aging performance is greatly reduced. At high temperatures, HVA demonstrates better anti-aging performance than conventional styrene–butadiene–styrene (SBS)-modified asphalt (Guo Chuang, GC). The change of the high-temperature rheological indices of the two HVA types (SHVA and TAFPACK-super HVA (TPS)) showed a smaller activation energy index (EAI), a more considerable viscous component of binder creep stiffness (Gv), and more minor accumulated stain (racc), indicating a more significant anti-short-term and long-term aging performance, which is beneficial to the high-temperature performance of asphalts. However, the changes in low-temperature rheological properties do not align with those in high-temperature rheological properties after long-term aging. The BBR test results reveal that TPS exhibits worse low-temperature performance than GC and SHVA. During the thermal aging process, the contribution rate of the modifiers in SHVA against RTFO and PAV aging is higher than that of the modifiers in TPS, which contributes to the superior anti-aging property. Overall, SHVA demonstrates the best anti-aging performance among the five asphalts tested. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

16 pages, 2241 KiB  
Article
Laboratory Evaluation of High-Temperature Properties of Recycled PMA Binders
by Jihyeon Yun, Il-Ho Na, Pangil Choi, Bongjun Ji and Hyunhwan Kim
Sustainability 2023, 15(17), 12744; https://doi.org/10.3390/su151712744 - 23 Aug 2023
Cited by 1 | Viewed by 1179
Abstract
Various environmentally friendly additives have been used to mitigate significant damage, such as plastic deformation and cracking, in asphalt pavements over the long term. Despite the existence of research demonstrating the efficacy of the materials for asphalt mixture, there has been a lack [...] Read more.
Various environmentally friendly additives have been used to mitigate significant damage, such as plastic deformation and cracking, in asphalt pavements over the long term. Despite the existence of research demonstrating the efficacy of the materials for asphalt mixture, there has been a lack of studies focusing on the recycling of modified asphalt binders. Therefore, this study conveys the laboratory evaluation of the high-temperature properties of 12 recycled polymer-modified asphalt (PMA) binders as basic research. The data evaluation was carried out using crumb rubber modifier (CRM), styrene-butadiene-styrene (SBS), and styrene-isoprene-styrene (SIS) modified binders, depending on their recycled binders. To assess the properties of each binder, the viscosity and viscoelasticity were measured. Overall, the results of this study revealed that (1) an increasing trend for the viscosity of all asphalt binders was seen as the recycled binder was added and showed their characteristics depending on modifiers; (2) the tendency for using each modified binder in the original and rolling thin-film oven (RTFO) condition appeared for modifiers to have their properties when reusing them; (3) from the Jnr and %rec values, each property of modifiers kept its inherent characteristics, but a potential limit was seen in that a styrene block copolymer was mainly effective on this test method. To sum up, modifiers in asphalt mixture can have their unique properties even after reusing them in recycled asphalt mixture. Therefore, it is recommended that modifiers in asphalt mixture are considered as a potential factor in utilizing reclaimed asphalt pavement (RAP). Full article
Show Figures

Figure 1

4 pages, 1702 KiB  
Proceeding Paper
Rheological and Aging Characteristics of Polymer-Modified Asphalt with Addition of Sulfur
by Ana Luiza Rodrigues, Caio Falcão and R. Christopher Williams
Eng. Proc. 2023, 36(1), 42; https://doi.org/10.3390/engproc2023036042 - 14 Jul 2023
Viewed by 1217
Abstract
The polymer modification of asphalt binders was first introduced in Europe in the 1980s and has gained use, as lower-quality asphalt binders did not perform well under increasingly heavier traffic loading on pavements. The influence of chemical cross-linkers such as sulfur on the [...] Read more.
The polymer modification of asphalt binders was first introduced in Europe in the 1980s and has gained use, as lower-quality asphalt binders did not perform well under increasingly heavier traffic loading on pavements. The influence of chemical cross-linkers such as sulfur on the rheological, morphological, and aging characteristics of the polymer-modified asphalt (PMA) binder has been experimentally examined. The PMAs were prepared, blending different sulfur contents (0.03, 0.1, 0.3, and 0.5% by wt. of binder) with a neat binder. The samples were aged by a rolling thin film oven (RTFO) and a pressure aging vessel (PAV) and examined through rheologic investigations. Using models, including master curves, the Glover–Rowe parameter, and aging indexes, the effect of the aging resistance of the asphalt binder modified with sulfur was analyzed. The results indicate that adding sulfur up to 0.3% improved the performance grade range, elasticity, low-temperature cracking resistance, and rutting resistance of the PMA. Additionally, the introduction of sulfur improved the aging resistance of the PMA. Full article
Show Figures

Figure 1

17 pages, 5186 KiB  
Article
Reconstruction of Asphalt Pavements with Crumb Rubber Modified Asphalt Mixture in Cold Region: Material Characterization, Construction, and Performance
by Dongzhao Jin, Dongdong Ge, Jiaqing Wang, Lance Malburg and Zhanping You
Materials 2023, 16(5), 1874; https://doi.org/10.3390/ma16051874 - 24 Feb 2023
Cited by 28 | Viewed by 4251
Abstract
Dry-processed rubberized asphalt mixture has recently attracted a lot of attention as an alternative to conventional asphalt mixtures. Dry-processed rubberized asphalt pavement has improved the overall performance characteristics compared to the conventional asphalt road. The objective of this research is to demonstrate the [...] Read more.
Dry-processed rubberized asphalt mixture has recently attracted a lot of attention as an alternative to conventional asphalt mixtures. Dry-processed rubberized asphalt pavement has improved the overall performance characteristics compared to the conventional asphalt road. The objective of this research is to demonstrate the reconstruction of rubberized asphalt pavement and evaluate the pavement performance of dry-processed rubberized asphalt mixture based on laboratory and field tests. The noise mitigation effect of dry-processed rubberized asphalt pavement was evaluated at the field construction sites. A prediction of pavement distresses and long-term performance was also conducted using mechanistic-empirical pavement design. In terms of experimental evaluation, the dynamic modulus was estimated using materials test system (MTS) equipment, the low-temperature crack resistance was characterized by the fracture energy from the indirect tensile strength test (IDT), and the asphalt aging was assessed with the rolling thin-film oven (RTFO) test and the pressure aging vessel (PAV) test. The rheology properties of asphalt were estimated by a dynamic shear rheometer (DSR). Based on the test results: (1) The dry-processed rubberized asphalt mixture presented better resistance to cracking, as the fracture energy was enhanced by 29–50% compared to that of conventional hot mix asphalt (HMA); and (2) the high-temperature anti-rutting performance of the rubberized pavement increased. The dynamic modulus increased up to 19%. The findings of the noise test showed that at different vehicle speeds, the rubberized asphalt pavement greatly reduced the noise level by 2–3 dB. The pavement M-E (mechanistic-empirical) design-predicted distress illustrated that the rubberized asphalt pavement could reduce the IRI, rutting, and bottom-up fatigue-cracking distress based on a comparison of prediction results. To sum up, the dry-processed rubber-modified asphalt pavement has better pavement performance compared to the conventional asphalt pavement. Full article
(This article belongs to the Special Issue Asphalt Mixtures and Pavements Design)
Show Figures

Figure 1

17 pages, 2983 KiB  
Article
Laboratory Evaluation of Asphalt Binders Containing Styrene-Butadiene-Styrene (SBS) and Processed Oil
by Navid Hemmati, Shyaamkrishnan Vigneswaran, Hyun Hwan Kim, Moon-Sup Lee and Soon-Jae Lee
Materials 2023, 16(3), 1235; https://doi.org/10.3390/ma16031235 - 31 Jan 2023
Cited by 11 | Viewed by 1786
Abstract
The study presents an experimental evaluation to improve the resistivity of binders with “Styrene-Butadiene-Styrene” (SBS) and “Processed oil” by studying the physical properties, rheology, and cracking. For this experiment, PG 64-22 was mixed with SBS at different percentages of 5%, 10%, and 15% [...] Read more.
The study presents an experimental evaluation to improve the resistivity of binders with “Styrene-Butadiene-Styrene” (SBS) and “Processed oil” by studying the physical properties, rheology, and cracking. For this experiment, PG 64-22 was mixed with SBS at different percentages of 5%, 10%, and 15% by weight of the original binder with two processed oil contents of 6% and 12% by weight of the binder. Laboratory tests have been conducted at various high, medium, and low temperature ranges to evaluate their properties. The processed oil polymer modified asphalt (PMA) binder is artificially aged in both the short and long-term using a Rolling Thin Film Oven (RTFO) and a Pressure Aging Vessel (PAV). The Superpave testing method was performed on modified binders using a Rotational Viscometer (RV), Dynamic Shear Rheometer (DSR), and Bending Beam Rheometer (BBR). The results of this study illustrate (1) The addition of SBS leads to higher viscosity, but the co-modification of asphalt binder with the processed oil shows a significant modulation of the viscosity value. (2) In addition, processed oil reduced the resistance to rutting, but the addition of SBS significantly improved the rutting resistance of the asphalt binder. (3) The addition of SBS and processed oil improved the value of G sin δ, notably. (4) According to BBR, it has been shown that the addition of SBS in addition to the processed oil improves the stiffness values of modified asphalt binders. Full article
(This article belongs to the Special Issue Asphalt Road Paving Materials)
Show Figures

Figure 1

16 pages, 3768 KiB  
Article
Characterization of Base Oil Effects on Aged Asphalt Binders Considering Bicycle Road
by Jihyeon Yun, Hyun Joon Choi, Il-Ho Na and Hyun Hwan Kim
Materials 2023, 16(2), 624; https://doi.org/10.3390/ma16020624 - 9 Jan 2023
Cited by 2 | Viewed by 1486
Abstract
Demand for various bicycles and sharing systems has constantly been growing worldwide as they improve the quality of life and promote eco-friendly transportation. Accordingly, it is inevitable that bicycle roads should be expanded. As bicycle roads have a relatively lower load applied than [...] Read more.
Demand for various bicycles and sharing systems has constantly been growing worldwide as they improve the quality of life and promote eco-friendly transportation. Accordingly, it is inevitable that bicycle roads should be expanded. As bicycle roads have a relatively lower load applied than automobile roads, adopting a design method that uses a high reclaimed asphalt pavement (RAP) content can be beneficial. However, much uncertainty still exists about the relation between the mixing method and application in field sites, without appropriately considering the quality control of the rejuvenator. Therefore, this study aims to demonstrate the effect of base oil as a rejuvenator on aged binders, considering the use of a high RAP content for bicycle roads. To prepare the aged binder, a rolling thin-film oven (RTFO) and pressure aging vessel (PAV) were used to imitate the life cycle of asphalt pavement from production to service life, and then three contents of aged binder (0%, 50%, and 100%) were added and mixed with fresh PG 64-22 base binder. Finally, each type of prepared aged asphalt binder was blended with three different base oil contents (0%, 5%, and 10%). The results indicated that (1) the addition of base oil effectively decreased the viscosity of aged binders, (2) aged binders containing base oil showed less G*/sin δ compared to originally aged binders, and (3) the application of base oil improves the cracking properties of the aged binder by decreasing stiffness. In conclusion, the most striking observation from the data analysis from the Superpave test and statistical results was the effect of reducing the asphaltene portion based on the use of base oil in the aged binder. Therefore, using base oil in RAP can enable the application of a high RAP content to the bicycle road. Full article
(This article belongs to the Special Issue Preparation and Properties of New Cementitious Materials)
Show Figures

Figure 1

15 pages, 6344 KiB  
Article
Comprehensive Study on the Performance of Waste HDPE and LDPE Modified Asphalt Binders for Construction of Asphalt Pavements Application
by Usman Ghani, Bakht Zamin, Muhammad Tariq Bashir, Mahmood Ahmad, Mohanad Muayad Sabri Sabri and Suraparb Keawsawasvong
Polymers 2022, 14(17), 3673; https://doi.org/10.3390/polym14173673 - 4 Sep 2022
Cited by 30 | Viewed by 5904
Abstract
This research is aimed at investigating the mechanical behavior of the bitumen by the addition of high-density polyethylene (HDPE) and low-density polyethylene (LDPE) obtained from waste plastic bottles and bags. Polymers (HDPE and LDPE) with percentages of 0%, 2%, 4%, and 6% in [...] Read more.
This research is aimed at investigating the mechanical behavior of the bitumen by the addition of high-density polyethylene (HDPE) and low-density polyethylene (LDPE) obtained from waste plastic bottles and bags. Polymers (HDPE and LDPE) with percentages of 0%, 2%, 4%, and 6% in shredded form by weight of bitumen were used to evaluate the spectroscopic, structural, morphological, and rheological properties of polymer-modified binders. The rheological properties for different factors; viscosity (ἠ) from Rotational Viscometer (RV), rutting factor G*/Sin (δ), fatigue characteristics G*. Sin (δ), for the modified binder from dynamic shear rheometer (DSR), Short and long-term aging from rolling thin film oven (RTFO), and pressure aging vessel (PAV) was determined. The thermal characteristics, grain size, and texture of polymers for both LDPE and HDPE were found using bending beam rheometer (BBR) and X-ray diffraction (XRD), respectively. Fourier transform infrared (FTIR) analysis revealed the presence of polymer contents in the modified binder. Scanning electron microscopy (SEM) images revealed the presence of HDPE and LDPE particles on the surface of the binder. Creep Rate (m) and Stiffness (S) analysis in relationship with temperature showed a deduction in stress rate relaxation. Results have revealed the best rutting resistance for 6% HDPE. It also showed an improvement of 95.27% in G*/Sin (δ) which increased the performance of the bituminous mix. Similarly, the addition of 4% LDPE resulted in maximum dynamic viscosity irrespective of the temperatures. Moreover, fatigue resistance has shown a significant change with the HDPE and LDPE. The festinating features of waste plastic modified binder make it important to be used in the new construction of roads to address the high viscosity and mixing problems produced by plastic waste and to improve the performance of flexible pavements all over the world. Full article
(This article belongs to the Special Issue Application of Polymer Materials in Pavement Design)
Show Figures

Figure 1

17 pages, 4150 KiB  
Article
Effect of Thermal Oxygen Aging Mode on Rheological Properties and Compatibility of Lignin-Modified Asphalt Binder by Dynamic Shear Rheometer
by Meng Cai, Xun Zhao, Xuanzhen Han, Peng Du, Yi Su and Cheng Cheng
Polymers 2022, 14(17), 3572; https://doi.org/10.3390/polym14173572 - 30 Aug 2022
Cited by 11 | Viewed by 2575
Abstract
Lignin is abundant in nature. The use of lignin in the asphalt pavement industry can improve pavement performance while effectively optimizing pavement construction costs. The purpose of this paper is to study the effect of lignin on the anti-aging properties of asphalt. Commercial [...] Read more.
Lignin is abundant in nature. The use of lignin in the asphalt pavement industry can improve pavement performance while effectively optimizing pavement construction costs. The purpose of this paper is to study the effect of lignin on the anti-aging properties of asphalt. Commercial lignin was selected to prepare a lignin-modified asphalt binder. The properties of lignin-modified asphalt were studied by rheological experiments. The high-temperature rheological properties of two kinds of base asphalt and modified asphalt samples with different contents of lignin under three conditions of original, rolling thin film oven (RTFO) aging, and pressure aging vessel (PAV) were tested and analyzed with temperature sweep, frequency sweep, and multiple stress creep recovery (MSCR) tests. By comparing the variation laws of evaluation indicators, such as complex shear modulus G*, phase angle δ, anti-aging index, cumulative strain, and viscous component Gv, we found that lignin could effectively improve the high-temperature stability of base asphalt, but it had a negative impact on the compatibility issues of base asphalt. Meanwhile, lignin played a filling role in the base asphalt, and the increase in viscosity was the fundamental reason for improving the high-temperature stability of the base asphalt. The research results indicated that lignin could effectively improve the anti-aging performance of asphalt and play a positive role in prolonging the service life of pavement. Full article
(This article belongs to the Special Issue Lignin Based Materials: Structure, Properties and Applications)
Show Figures

Figure 1

15 pages, 4949 KiB  
Article
Evaluation of Effect of Thermoplastic Polyurethane (TPU) on Crumb Rubber Modified (CRM) Asphalt Binder
by Jihyeon Yun, Mithil Mazumder, Il-Ho Na, Moon-Sup Lee and Hyun Hwan Kim
Materials 2022, 15(11), 3824; https://doi.org/10.3390/ma15113824 - 27 May 2022
Cited by 12 | Viewed by 2364
Abstract
Crumb rubber binder with thermoplastic polyurethane (TPU) has been experimented with to characterize the performance properties considering the workability, rutting, fatigue cracking and cracking resistance at low temperatures depending on the temperatures and aging states. Physical and rheological properties were evaluated to proceed [...] Read more.
Crumb rubber binder with thermoplastic polyurethane (TPU) has been experimented with to characterize the performance properties considering the workability, rutting, fatigue cracking and cracking resistance at low temperatures depending on the temperatures and aging states. Physical and rheological properties were evaluated to proceed with the study by applying Superpave asphalt binder testing and multi-stress creep recovery (MSCR). Based on the targeted experiments, the binder samples were produced at three aging states (original, short-term aged and long-term aged) using a rolling thin film oven (RTFO) and pressure aging vessel (PAV). The results revealed that (i) the addition of TPU into CRM binders has a potential effect on increasing viscoelasticity at the original condition, (ii) CRM binders containing TPU showed improved anti-aging performance based on results of RTFO residues and (iii) the inclusion of TPU made it possible for CRM asphalt binder to improve its fatigue and cracking resistance at low temperature. Full article
Show Figures

Figure 1

16 pages, 4069 KiB  
Article
Effect of Processed Oil on Asphalt Binder Properties
by Navid Hemmati, Jihyeon Yun, Hyunhwan Kim, Moon-Sup Lee and Soon-Jae Lee
Materials 2022, 15(11), 3739; https://doi.org/10.3390/ma15113739 - 24 May 2022
Cited by 3 | Viewed by 1893
Abstract
This study investigates the effectiveness of processed oil in the modification of PG 64-22 and PG 76-22 by assessing their physical and rheological properties, and multiple comparison was conducted between the two binders. The base binders PG 64-22 and PG 76-22 were blended [...] Read more.
This study investigates the effectiveness of processed oil in the modification of PG 64-22 and PG 76-22 by assessing their physical and rheological properties, and multiple comparison was conducted between the two binders. The base binders PG 64-22 and PG 76-22 were blended with processed oil at four different percentages of contents (3%, 6%, 9% and 12% by the weight of the binder) and compared with the control binder in each test. The base and modified binders were artificially short-term and long-term aged using a rolling thin film oven (RTFO) and pressure aging vessel (PAV) procedures. Superpave binder tests were performed on the modified binders by applying a rotational viscometer (RV), dynamic shear rheometer (DSR), and bending beam rheometer (BBR). The comparisons and results presented in this study indicate that (1) the processed oil has a significant effect on the binders’ viscosity, which changes with respect to the increment of processed oil content. The viscosity of both modified binders decreased with the addition of 3, 6, 9 and 12% processed oil; (2) the performed DSR test showed that the addition of processed oil had a negative effect on the rutting resistance for both binders, since in PG 64-22, G*/Sin δ values decreased by 55, 65, 75 and 83% with the addition of 3, 6, 9 and 12% processed oil, respectively, while a decrement of G*/Sin δ of 24, 45, 58 and 65% with the addition of 3, 6, 9 and 12% processed oil was observed in PG 76-22; meanwhile, the fatigue cracking performance was improved and was found to be effective, while G* Sin δ in PG76-22 decreased by 9, 30, 36, and 52% and in PG 64-22 by 27, 44, 53, and 67% with the addition of 3, 6, 9 and 12% processed oil; (3) the results from the BBR test indicate significant improvement in the thermal cracking properties of the binders. The addition of 3, 6, 9 and 12% processed oil resulted in a decrease in the stiffness of both the PG 64-22 and PG 76-22 binders, with a positive effect consequently being observed on the m-values of the binders. Full article
(This article belongs to the Topic Innovative Construction and Building Materials)
Show Figures

Figure 1

Back to TopTop