Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = river valley contraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 8370 KiB  
Article
Kazakhstan Has an Unexpected Diversity of Medicinal Plants of the Genus Acorus (Acoraceae) and Could Be a Cradle of the Triploid Species A. calamus
by Dmitry D. Sokoloff, Galina V. Degtjareva, Carmen M. Valiejo-Roman, Elena E. Severova, Sophia Barinova, Victor V. Chepinoga, Igor V. Kuzmin, Alexander N. Sennikov, Alexander I. Shmakov, Mikhail V. Skaptsov, Sergey V. Smirnov and Margarita V. Remizowa
Plants 2024, 13(14), 1978; https://doi.org/10.3390/plants13141978 - 19 Jul 2024
Cited by 3 | Viewed by 1813
Abstract
The Acorus calamus group, or sweet flag, includes important medicinal plants and is classified into three species: A. americanus (diploid), A. verus (tetraploid), and A. calamus (sterile triploid of hybrid origin). Members of the group are famous as components of traditional Indian medicine, [...] Read more.
The Acorus calamus group, or sweet flag, includes important medicinal plants and is classified into three species: A. americanus (diploid), A. verus (tetraploid), and A. calamus (sterile triploid of hybrid origin). Members of the group are famous as components of traditional Indian medicine, and early researchers suggested the origin of the sweet flag in tropical Asia. Subsequent research led to an idea of the origin of the triploid A. calamus in the Amur River basin in temperate Asia, because this was the only region where both diploids and tetraploids were known to co-occur and be capable of sexual reproduction. Contrary to this hypothesis, triploids are currently very rare in the Amur basin. Here, we provide the first evidence that all three species occur in Kazakhstan. The new records extend earlier data on the range of A. verus for c. 1800 km. Along the valley of the Irtysh River in Kazakhstan and the adjacent Omsk Oblast of Russia, A. verus is recorded in the south, A. americanus in the north, and A. calamus is common in between. We propose the Irtysh River valley as another candidate for a cradle of the triploid species A. calamus. It is possible that the range of at least one parent species (A. americanus) has contracted through competition with its triploid derivative species, for which the Irtysh River floods provide a tool for downstream range expansion. We refine our earlier data and show that the two parent species have non-overlapping ranges of variation in a quantitative metric of leaf aerenchyma structure. Full article
(This article belongs to the Section Plant Systematics, Taxonomy, Nomenclature and Classification)
Show Figures

Figure 1

14 pages, 6590 KiB  
Article
Simplified Genomic Data Revealing the Decline of Aleuritopteris grevilleoides Population Accompanied by the Uplift of Dry-Hot Valley in Yunnan, China
by Xue-Ying Wei, Ting Wang, Jin Zhou, Wei-Yue Sun, Dong-Mei Jin, Jian-Ying Xiang, Jian-Wen Shao and Yue-Hong Yan
Plants 2023, 12(7), 1579; https://doi.org/10.3390/plants12071579 - 6 Apr 2023
Cited by 3 | Viewed by 2388
Abstract
Understanding the evolutionary history of endangered species is crucial for identifying the main reasons for species endangerment in the past and predicting the changing trends and evolutionary directions of their future distribution. In order to study the impact of environmental changes caused by [...] Read more.
Understanding the evolutionary history of endangered species is crucial for identifying the main reasons for species endangerment in the past and predicting the changing trends and evolutionary directions of their future distribution. In order to study the impact of environmental changes caused by deep valley incision after the uplift of the Qinghai-Tibet Plateau on endangered species, we collected 23 samples belonging to four populations of Aleuritopteris grevilleoides, an endangered fern endemic to the dry-hot valleys (DHV) of Yunnan. Single-nucleotide variation sites (SNPs) were obtained by the genotyping-by-sequencing (GBS) method, and approximately 8085 SNP loci were identified. Through the reconstruction and analysis of genetic diversity, population structure, population dynamics, evolution time, and ancestral geographical distribution, combined with geological historical events such as the formation of dry-hot valleys, this study explores the formation history, current situation, reasons for endangerment and scientifically sound measures for the protection of A. grevilleoides. In our study, A. grevilleoides had low genetic diversity (Obs_Het = 0.16, Exp_Het = 0.32, Pi = 0.33) and a high inbreeding coefficient (Fis = 0.45). The differentiation events were 0.18 Mya, 0.16 Mya, and 0.11 Mya in the A. grevilleoides and may have been related to the formation of terraces within the dry-hot valleys. The history of population dynamics results shows that the diversion of the river resulted in a small amount of gene flow between the two clades, accompanied by a rapid increase in the population at 0.8 Mya. After that, the effective population sizes of A. grevilleoides began to contract continuously due to topographic changes resulting from the continuous expansion of dry-hot valleys. In conclusion, we found that the environmental changes caused by geological events might be the main reason for the changing population size of A. grevilleoides. Full article
(This article belongs to the Special Issue Mapping Asia Plants)
Show Figures

Figure 1

17 pages, 16188 KiB  
Article
Species Richness of Papilionidae Butterflies (Lepidoptera: Papilionoidea) in the Hengduan Mountains and Its Future Shifts under Climate Change
by Xin-Tong Yu, Fei-Ling Yang, Wa Da, Yu-Chun Li, Hong-Mei Xi, Adam M. Cotton, Hui-Hong Zhang, Kuang Duan, Zhen-Bang Xu, Zhi-Xian Gong, Wen-Ling Wang and Shao-Ji Hu
Insects 2023, 14(3), 259; https://doi.org/10.3390/insects14030259 - 6 Mar 2023
Cited by 3 | Viewed by 4070
Abstract
The family of Papilionidae (Lepidoptera: Papilionoidea) is a group of butterflies with high ecological and conservation value. The Hengduan Mountains (HMDs) in Southwest China is an important diversity centre for these butterflies. However, the spatial distribution pattern and the climate vulnerability of Papilionidae [...] Read more.
The family of Papilionidae (Lepidoptera: Papilionoidea) is a group of butterflies with high ecological and conservation value. The Hengduan Mountains (HMDs) in Southwest China is an important diversity centre for these butterflies. However, the spatial distribution pattern and the climate vulnerability of Papilionidae butterflies in the HDMs remain unknown to date. The lack of such knowledge has already become an obstacle in formulating effective butterfly conservation strategies. The present research compiled a 59-species dataset with 1938 occurrence points. The Maxent model was applied to analyse the spatial pattern of species richness in subfamilies Parnassiinae and Papilioninae, as well as to predict the response under the influence of climate change. The spatial pattern of both subfamilies in the HDMs has obvious elevation prevalence, with Parnassiinae concentrated in the subalpine to alpine areas (2500–5500 m) in western Sichuan, northwestern Yunnan and eastern Tibet, while Papilioninae is concentrated in the low- to medium-elevation areas (1500–3500 m) in the river valleys of western Yunnan and western Sichuan. Under the influence of climate change, both subfamilies would exhibit northward and upward range shifts. The majority of Parnassiinae species would experience drastic habitat contraction, resulting in lower species richness across the HDMs. In contrast, most Papilioninae species would experience habitat expansion, and the species richness would also increase significantly. The findings of this research should provide new insights and a clue for butterfly diversity and climatic vulnerability in southwestern China. Future conservation efforts should be focused on species with habitat contraction, narrow-ranged distribution and endemicity with both in situ and ex situ measures, especially in protected areas. Commercialised collecting targeting these species must also be regulated by future legislation. Full article
(This article belongs to the Collection Butterfly Diversity and Conservation)
Show Figures

Figure 1

14 pages, 7708 KiB  
Article
Evaluating the Influence of Climate Change on Sophora moorcroftiana (Benth.) Baker Habitat Distribution on the Tibetan Plateau Using Maximum Entropy Model
by Fumei Xin, Jiming Liu, Chen Chang, Yuting Wang and Liming Jia
Forests 2021, 12(9), 1230; https://doi.org/10.3390/f12091230 - 9 Sep 2021
Cited by 12 | Viewed by 2469
Abstract
The ecosystems across the Tibetan Plateau are changing rapidly in response to climate change, which poses unprecedented challenges for the control and mitigation of desertification on the Tibetan Plateau. Sophora moorcroftiana (Benth.) Baker is a drought-resistant plant species that has great potential to [...] Read more.
The ecosystems across the Tibetan Plateau are changing rapidly in response to climate change, which poses unprecedented challenges for the control and mitigation of desertification on the Tibetan Plateau. Sophora moorcroftiana (Benth.) Baker is a drought-resistant plant species that has great potential to be used for desertification and soil degradation control on the Tibetan Plateau. In this study, using a maximum entropy (MaxEnt) niche model, we characterized the habitat distribution of S. moorcroftiana on the Tibetan Plateau under both current and future climate scenarios. To construct a robust model, 242 population occurrence records, gathered from our field surveys, historical data records, and a literature review, were used to calibrate the MaxEnt model. Our results showed that, under current environmental conditions, the habitat of S. moorcroftiana was concentrated in regions along the Yarlung Tsangpo, Lancang, and Jinsha rivers on the Tibetan Plateau. Elevation, isothermality, and minimal air temperature of the coldest month played a dominant role in determining the habitat distribution of S. moorcroftiana. Under future climate scenarios, the increased air temperature was likely to benefit the expansion of S. moorcroftiana over the short term, but, in the long run, continued warming may restrict the growth of S. moorcroftiana and lead to a contraction in its habitat. Importantly, the Yarlung Tsangpo River valley was found to be the core habitat of S. moorcroftiana, and this habitat moved westwards along the Yarlung Tsangpo River under future climate scenarios, but did not detach from it. This finding suggests that, with the current pace of climate change, an increase in efforts to protect and cultivate S. moorcroftiana is necessary and critical to control desertification on the Tibetan Plateau. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

17 pages, 4425 KiB  
Article
The Cause and Statistical Analysis of the River Valley Contractions at the Xiluodu Hydropower Station, China
by Mingwei Li, Zhifang Zhou, Chao Zhuang, Yawen Xin, Meng Chen and Jian Wu
Water 2020, 12(3), 791; https://doi.org/10.3390/w12030791 - 12 Mar 2020
Cited by 12 | Viewed by 3726
Abstract
The Xiluodu Dam is a concrete double-curvature arch dam with a crest elevation of 610 m and a height of 285.5 m. Since the impoundment of the Xiluodu reservoir, remarkable river valley contractions (RVCs) have been observed upstream and downstream of the reservoir, [...] Read more.
The Xiluodu Dam is a concrete double-curvature arch dam with a crest elevation of 610 m and a height of 285.5 m. Since the impoundment of the Xiluodu reservoir, remarkable river valley contractions (RVCs) have been observed upstream and downstream of the reservoir, potentially threatening the safety of the dam. However, the cause of these RVCs remains unclear. Based on an analysis of hydrogeological conditions, the RVCs were determined a result of the expansion of the aquifer, within which the effective stress decreased due to an increase in the hydraulic head after reservoir impoundment. Referring to the hydrostatic seasonal time (HST) model, a groundwater hydrostatic seasonal (GHS) model is proposed for simulating and predicting the development of the RVCs. Unlike the HST model, the GHS model can provide information on aquifer hydraulic diffusivity. The calibration results illustrate that the GHS model can accurately fit the observed RVCs data. The calculation results revealed that the RVCs were mainly affected by the hydraulic head of the confined aquifer, and that seasonal effects gave rise to less than 10% of the total RVCs. Finally, the development of RVCs were predicted using the GHS model. The prediction results demonstrated that the RVCs of most monitoring lines in the Xiluodu reservoir would gradually approach a convergence condition after 6 February 2021. Until the deadline of the prediction on 1 May 2035, there is still one monitoring line that has not reached a convergence condition (whose RVCs are 157.6 mm, and where the RVC growth rate will decrease to 0.005 mm/d by that time). Considering the large amount of RVCs, we think the safety of the dam requires closer consideration. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

23 pages, 12463 KiB  
Article
Coupled Thermo-Hydro-Mechanical Analysis of Valley Narrowing Deformation of High Arch Dam: A Case Study of the Xiluodu Project in China
by Tao Yin, Qingbin Li, Yu Hu, Sanda Yu and Guohe Liang
Appl. Sci. 2020, 10(2), 524; https://doi.org/10.3390/app10020524 - 10 Jan 2020
Cited by 25 | Viewed by 3649
Abstract
General studies examining reservoir bank deformation during its impoundment primarily consider the coupling effect between the seepage field and the stress field, but thermal field variation in the bedrock and its effect are rarely considered. In this paper, a case study concerning a [...] Read more.
General studies examining reservoir bank deformation during its impoundment primarily consider the coupling effect between the seepage field and the stress field, but thermal field variation in the bedrock and its effect are rarely considered. In this paper, a case study concerning a 285.5 m high arch dam project, where a valley narrowing deformation occurs after the initial impoundment, is implemented. An analysis of in situ measurement is given to interpret the causes of the unique hydro-thermal phenomenon of the project. Possible reasons for the valley narrowing deformation pattern are discussed. A numerical model based on the thermo-hydro-mechanical (THM) coupling theory of porous medium is used to calculate the evolution processes of the thermal, seepage, and stress fields of the area after impoundment of the reservoir. The simulated deformation trend and pattern of the river valley are consistent with the monitoring data. The results demonstrate that water infiltration after impounding cools the bedrock and the temperature decrease makes the bedrock contract, which induces the narrowing deformation of the valley. Factor analysis of the hydrothermal field shows that temperature variation is the main cause of long-term deformation. Thus, it shall be considered as a key factor in terms of structural safety assessment. Furthermore, sensitivity analysis of the hydraulic conductivities of rock strata suggests that future development of the deformation can be eased off if the anti-seepage method is adopted on the bedrock. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

Back to TopTop