Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = rhenium-molybdenum separation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4119 KiB  
Article
Structural Mechanics Calculations of SiC/Mo-Re Composites with Improved High Temperature Creep Properties
by Ke Li, Egor Kashkarov, Hailiang Ma, Ping Fan, Qiaoli Zhang, Andrey Lider and Daqing Yuan
Materials 2025, 18(15), 3459; https://doi.org/10.3390/ma18153459 - 23 Jul 2025
Viewed by 211
Abstract
In the present work, we design a laminated composite composed of molybdenum–rhenium alloy and silicon carbide ceramics for use in space reactors as a candidate structural material with neutron spectral shift properties. The influence of the internal microstructure on the mechanical properties is [...] Read more.
In the present work, we design a laminated composite composed of molybdenum–rhenium alloy and silicon carbide ceramics for use in space reactors as a candidate structural material with neutron spectral shift properties. The influence of the internal microstructure on the mechanical properties is investigated by finite element simulation based on scale separation. The results of the study showed that the incorporation of gradient transition layers between the metallic and ceramic phases effectively mitigates thermally induced local stresses arising from mismatches in coefficients of thermal expansion. By optimizing the composition of the gradient transition layers, the stress distribution within the composite under operating conditions has been adjusted. As a result, the stress experienced by the alloy phase is significantly reduced, potentially extending the high-temperature creep rupture life. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

11 pages, 2351 KiB  
Article
Extraction of Rhenium with Trialkylbenzylammonium Chloride
by I. A. Kalina, E. V. Zlobina, Zh. Zh. Bekishev, A. G. Ismailova, Kh. S. Tassibekov, Z. A. Iskakov, B. Zh. Toksanbayev, A. T. Kumarbekova and A. S. Fomenko
Metals 2025, 15(2), 212; https://doi.org/10.3390/met15020212 - 18 Feb 2025
Viewed by 847
Abstract
This study investigates the extraction of rhenium using trialkylbenzyl ammonium chloride (TABAC) as an alternative to trialkylamine (TAA) for recovering rhenium from highly diluted solutions. Rhenium, present as ReO4 over a wide acidity range, was extracted via an anion exchange mechanism [...] Read more.
This study investigates the extraction of rhenium using trialkylbenzyl ammonium chloride (TABAC) as an alternative to trialkylamine (TAA) for recovering rhenium from highly diluted solutions. Rhenium, present as ReO4 over a wide acidity range, was extracted via an anion exchange mechanism in single-stage experiments monitored by inductively coupled plasma mass spectrometry (ICP-MS). Key variables, including pH, acid concentration, and the concentrations of extractant and metal, were examined. The results demonstrated a high extraction efficiency exceeding 99% within a pH range of 2 to 7 and from solutions containing sulfuric or hydrochloric acid at concentrations of 0.1 to 3.0 M (mol/L). However, extraction from nitric acid solutions was less efficient, with less than 30% recovery. Performance for both TAA-kerosene and TABAC-kerosene followed the order H2SO4 > HCl > HNO3. The optimal TABAC concentration was 10−2 M (mol/L) in kerosene. TABAC also showed higher selectivity than TAA, with separation coefficients Re/Mo = 66.8 and Re/W = 55.8 in 0.1–1.0 M (mol/L) sulfuric acid. Based on equilibrium studies, the complexes formed during extraction were identified as [R3R′NH]ReO4. This approach may offer environmentally friendly and cost-effective benefits for large-scale industrial applications, enabling efficient recovery of valuable rhenium while reducing waste and environmental impact. Full article
Show Figures

Figure 1

14 pages, 4266 KiB  
Article
Crosslinked Polydiallyldimethylammonium Chloride Adsorbent for the Selective Separation of Rhenium Ions from Pregnant Leach Solutions
by Mohammadbagher Fathi, Mehdi Mahmoudian, Richard Diaz Alorro and Mostafa Chegini
Materials 2024, 17(11), 2737; https://doi.org/10.3390/ma17112737 - 4 Jun 2024
Viewed by 1388
Abstract
The depletion of valuable mineral reserves has rendered effluents generated from mining and industrial processing activities a promising resource for the production of precious elements. The synthesis and improvement of new adsorbents to extract valuable compounds from industrial wastes and pregnant leach solutions, [...] Read more.
The depletion of valuable mineral reserves has rendered effluents generated from mining and industrial processing activities a promising resource for the production of precious elements. The synthesis and improvement of new adsorbents to extract valuable compounds from industrial wastes and pregnant leach solutions, besides increasing wealth, can play a significant role in reducing environmental concerns. In this work, a new and low-cost adsorbent for the selective extraction of rhenium (perrhenate ions, ReO4) was synthesized by the free-radical polymerization (FRP) of a diallyl dimethylammonium chloride monomer (quaternary amine) in the presence of a crosslinker. Various methods were employed to characterize the polymeric adsorbent. The results revealed that the designed polymeric adsorbent had a high surface area and pores with nano-metric dimensions and a pore volume of 6.4 × 10−3 cm3/g. Four environments—single, binary, multicomponent, and real solutions—were applied to evaluate the adsorbent’s performance in the selective separation of Re. Additionally, these environments were used to understand the behavior of molybdenum ions, the primary competitors of perrhenate ions in the ion exchange process. In competitive conditions, using variations in qe,mix/qe, an antagonism phenomenon (qe,mix/qe < 1) occurred due to the inhibitory effect of surface-adsorbed molybdenum ions on the binding of the perrhenate ions. However, across all conditions, the separation values for Re were higher than those for the other studied elements (Mo, Cu, Fe). Full article
(This article belongs to the Special Issue Adsorption Materials and Their Applications)
Show Figures

Figure 1

13 pages, 3191 KiB  
Article
Efficient Separation of Re (VII) and Mo (VI) by Extraction Using E-1006–Ammonium Sulfate Aqueous Two-Phase System
by Linlin Fan, Wenhui Li, Zilong Dai, Min Zhou and Yunren Qiu
Separations 2024, 11(5), 142; https://doi.org/10.3390/separations11050142 - 7 May 2024
Cited by 2 | Viewed by 1447
Abstract
Aqueous two-phase extraction (APTE) stands out as an environmentally friendly technique for the separation of metal ions. The separation of Re (VII) and Mo (VI) in an aqueous solution was investigated using a novel aqueous two-phase system (ATPS) consisting of isodecanol polyoxyethylene ether [...] Read more.
Aqueous two-phase extraction (APTE) stands out as an environmentally friendly technique for the separation of metal ions. The separation of Re (VII) and Mo (VI) in an aqueous solution was investigated using a novel aqueous two-phase system (ATPS) consisting of isodecanol polyoxyethylene ether (E-1006), ammonium sulfate, and water. A phase diagram of this system was developed, and the effects of pH, temperature, extraction time, the concentrations of E-1006 and (NH4)2SO4, and metal ions on the separation of Re (VII) and Mo (VI) were examined. The results show that at pH 7.0, Mo (VI) had almost transformed into the (NH4)2SO4-rich phase, while Re (VI) was extracted into the E-1006-rich phase. The increase in temperature induces a transition of Mo (VI) to the salt-rich phase, which is unfavorable for the extraction of Re (VII). The increase in the concentrations of E-1006 and (NH4)2SO4 has a positive effect on the separation of rhenium and molybdenum. Overall, the ATPS consisting of 200 g/L of E-1006, 200 g/L of (NH4)2SO4, and water yields an extraction efficiency of 97.2% for Re and a high separation factor of 2700 for Re (VII) and Mo (VI) from a mixture of 0.1 g/L of Re (VII) and 5 g/L of Mo (VI) at pH 7.0 and 323.15 K. Separation studies of the simulated leaching solution show that the extraction efficiency for Re (VI) is 99.1% and the separation factor of Re (VII) and Mo (VI) is 5100. Full article
Show Figures

Figure 1

19 pages, 3751 KiB  
Article
Selective Recovery of Molybdenum over Rhenium from Molybdenite Flue Dust Leaching Solution Using PC88A Extractant
by Ali Entezari-Zarandi, Dariush Azizi, Pavel Anatolyevich Nikolaychuk, Faïçal Larachi and Louis-César Pasquier
Metals 2020, 10(11), 1423; https://doi.org/10.3390/met10111423 - 26 Oct 2020
Cited by 15 | Viewed by 4289
Abstract
Selective solvent extraction of molybdenum over rhenium from molybdenite (MoS2) flue dust leaching solution was studied. In the present work, thermodynamic calculations of the chemical equilibria in aqueous solution were first performed, and the potential–pH diagram for the Mo–Re– [...] Read more.
Selective solvent extraction of molybdenum over rhenium from molybdenite (MoS2) flue dust leaching solution was studied. In the present work, thermodynamic calculations of the chemical equilibria in aqueous solution were first performed, and the potential–pH diagram for the Mo–Re–SO42–H2O system was constructed. With the gained insight on the system, 2-ethylhexyl phosphonic acid mono-(2-ethylhexyl)-ester (PC88A) diluted in kerosene was used as the extractant agent. Keeping constant the reaction temperature and aqueous-to-organic phase ratio (1:1), organic phase concentration and pH were the studied experimental variables. It was observed that by increasing the acidity of the solution and extractant concentration, selectivity towards Mo extraction increased, while the opposite was true for Re extraction. Selective Mo removal (+95%) from leach solution containing ca. 9 g/L Mo and 0.5 g/L Re was achieved when using an organic phase of 5% PC88A at pH = 0. No rhenium was coextracted during 10 min of extraction time at room temperature. Density functional theory (DFT) calculations were performed in order to study the interactions of organic extractants with Mo and Re ions, permitting a direct comparison of calculation results with the experimental data to estimate selectivity factors in Mo–Re separation. For this aim, PC88A and D2EHPA (di-(2-ethylhexyl) phosphoric acid) were simulated. The interaction energies of D2EHPA were shown to be higher than those of PC88A, which could be due to its stronger capability for complex formation. Besides, it was found that the interaction energies of both extractants follow this trend considering Mo species: MoO22+ > MoO42. It was also demonstrated through DFT calculations that the interaction energies of D2EHPA and PC88A with species are based on these trends, respectively: MoO22+ > MoO42 > ReO4 and MoO22+ > ReO4 > MoO42, in qualitative agreement with the experimental findings. Full article
(This article belongs to the Special Issue Recovery and Recycling of Valuable Metals)
Show Figures

Figure 1

12 pages, 3287 KiB  
Article
Separation of Rhenium from Lead-Rich Molybdenite Concentrate via Hydrochloric Acid Leaching Followed by Oxidative Roasting
by Guanghui Li, Zhixiong You, Hu Sun, Rong Sun, Zhiwei Peng, Yuanbo Zhang and Tao Jiang
Metals 2016, 6(11), 282; https://doi.org/10.3390/met6110282 - 16 Nov 2016
Cited by 20 | Viewed by 5739
Abstract
Lead-rich molybdenite is a typical rhenium-bearing molybdenum resource in China, which has not been efficiently utilized due to its high contents of lead and gangue minerals. In this study, hydrochloric acid was used for preliminarily removing lead and calcite from a lead-rich molybdenite [...] Read more.
Lead-rich molybdenite is a typical rhenium-bearing molybdenum resource in China, which has not been efficiently utilized due to its high contents of lead and gangue minerals. In this study, hydrochloric acid was used for preliminarily removing lead and calcite from a lead-rich molybdenite concentrate. Oxidative roasting-ammonia leaching was then carried out for separation of rhenium and extraction of molybdenum. The hydrochloric acid leaching experiments revealed that 93.6% Pb and 97.4% Ca were removed when the leaching was performed at 95 °C for 10 min with HCl concentration of 8 wt. % and liquid-solid ratio of 5 (mL/g). The results of direct oxidative roasting indicated that 89.3% rhenium was volatilized from the raw concentrate after roasting at 600 °C for 120 min in air. In contrast, the rhenium volatilization was enhanced distinctly to 98.0% after the acid-leached concentrate (leaching residue) was roasted at 550 °C for 100 min. By the subsequent ammonia leaching, 91.5% molybdenum was leached out from the calcine produced from oxidative roasting of the acid-leached concentrate, while only 79.3% Mo was leached from the calcine produced by roasting molybdenite concentrate without pretreatment. Full article
Show Figures

Figure 1

Back to TopTop