Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = restricted two-stage multilocus genome-wide association study (RTM-GWAS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2629 KB  
Article
Identification of Gene–Allele System Conferring Alkali-Tolerance at Seedling Stage in Northeast China Soybean Germplasm
by Chunmei Zong, Jinming Zhao, Yanping Wang, Lei Wang, Zaoye Chen, Yuxin Qi, Yanfeng Bai, Wen Li, Wubin Wang, Haixiang Ren, Weiguang Du and Junyi Gai
Int. J. Mol. Sci. 2024, 25(5), 2963; https://doi.org/10.3390/ijms25052963 - 4 Mar 2024
Cited by 4 | Viewed by 2018
Abstract
Salinization of cultivated soils may result in either high salt levels or alkaline conditions, both of which stress crops and reduce performance. We sampled genotypes included in the Northeast China soybean germplasm population (NECSGP) to identify possible genes that affect tolerance to alkaline [...] Read more.
Salinization of cultivated soils may result in either high salt levels or alkaline conditions, both of which stress crops and reduce performance. We sampled genotypes included in the Northeast China soybean germplasm population (NECSGP) to identify possible genes that affect tolerance to alkaline soil conditions. In this study, 361 soybean accessions collected in Northeast China were tested under 220 mM NaHCO3:Na2CO3 = 9:1 (pH = 9.8) to evaluate the alkali-tolerance (ATI) at the seedling stage in Mudanjiang, Heilongjiang, China. The restricted two-stage multi-locus model genome-wide association study (RTM-GWAS) with gene–allele sequences as markers (6503 GASMs) based on simplified genome resequencing (RAD-sequencing) was accomplished. From this analysis, 132 main effect candidate genes with 359 alleles and 35 Gene × Environment genes with 103 alleles were identified, explaining 90.93% and 2.80% of the seedling alkali-tolerance phenotypic variation, respectively. Genetic variability of ATI in NECSGP was observed primarily within subpopulations, especially in ecoregion B, from which 80% of ATI-tolerant accessions were screened out. The biological functions of 132 candidate genes were classified into eight functional categories (defense response, substance transport, regulation, metabolism-related, substance synthesis, biological process, plant development, and unknown function). From the ATI gene–allele system, six key genes–alleles were identified as starting points for further study on understanding the ATI gene network. Full article
(This article belongs to the Special Issue Advances in Molecular Plant Sciences)
Show Figures

Figure 1

20 pages, 2642 KB  
Article
The Identification of a Quantative Trait Loci-Allele System of Antixenosis against the Common Cutworm (Spodoptera litura Fabricius) at the Seedling Stage in the Chinese Soybean Landrace Population
by Lin Pan, Junyi Gai and Guangnan Xing
Int. J. Mol. Sci. 2023, 24(22), 16089; https://doi.org/10.3390/ijms242216089 - 8 Nov 2023
Viewed by 1552
Abstract
Common cutworm (CCW) is an omnivorous insect causing severe yield losses in soybean crops. The seedling-stage mini-tray identification system with the damaged leaf percentage (DLP) as an indicator was used to evaluate antixenosis against CCW in the Chinese soybean landrace population (CSLRP) under [...] Read more.
Common cutworm (CCW) is an omnivorous insect causing severe yield losses in soybean crops. The seedling-stage mini-tray identification system with the damaged leaf percentage (DLP) as an indicator was used to evaluate antixenosis against CCW in the Chinese soybean landrace population (CSLRP) under three environments. Using the innovative restricted two-stage multi-locus genome-wide association study procedure (RTM-GWAS), 86 DLP QTLs with 243 alleles (2–11/QTL) were identified, including 66 main-effect loci with 203 alleles and 57 QTL-environment interaction loci with 172 alleles. Among the main-effect loci, 12 large-contribution loci (R2 ≥ 1%) explained 25.45% of the phenotypic variation (PV), and 54 small-contribution loci (R2 < 1%) explained 16.55% of the PV. This indicates that the CSLRP can be characterized with a DLP QTL-allele system complex that has not been found before, except for a few individual QTLs without alleles involved. From the DLP QTL-allele matrix, the recombination potentials expressed in the 25th percentile of the DLP of all possible crosses were predicted to be reduced by 41.5% as the maximum improvement and 14.2% as the maximum transgression, indicating great breeding potential in the antixenosis of the CSLRP. From the QTLs, 62 candidate genes were annotated, which were involved in eight biological function categories as a gene network of the DLP. Changing from susceptible to moderate plus resistant varieties in the CSLRP, 26 QTLs had 32 alleles involved, in which 19 genes were annotated from 25 QTL-alleles, including eight increased negative alleles on seven loci and 11 decreased positive alleles on 11 loci, showing the major genetic constitution changes for the antixenosis enhancement at the seedling stage in the CSLRP. Full article
(This article belongs to the Special Issue Crop Biotic and Abiotic Stress Tolerance: 3rd Edition)
Show Figures

Figure 1

22 pages, 4265 KB  
Article
An Improved Genome-Wide Association Procedure Explores Gene–Allele Constitutions and Evolutionary Drives of Growth Period Traits in the Global Soybean Germplasm Population
by Can Wang, Xiaoshuai Hao, Xueqin Liu, Yanzhu Su, Yongpeng Pan, Chunmei Zong, Wubin Wang, Guangnan Xing, Jianbo He and Junyi Gai
Int. J. Mol. Sci. 2023, 24(11), 9570; https://doi.org/10.3390/ijms24119570 - 31 May 2023
Cited by 3 | Viewed by 2251
Abstract
In soybeans (Glycine max (L.) Merr.), their growth periods, DSF (days of sowing-to-flowering), and DFM (days of flowering-to-maturity) are determined by their required accumulative day-length (ADL) and active temperature (AAT). A sample of 354 soybean varieties from five world eco-regions was tested [...] Read more.
In soybeans (Glycine max (L.) Merr.), their growth periods, DSF (days of sowing-to-flowering), and DFM (days of flowering-to-maturity) are determined by their required accumulative day-length (ADL) and active temperature (AAT). A sample of 354 soybean varieties from five world eco-regions was tested in four seasons in Nanjing, China. The ADL and AAT of DSF and DFM were calculated from daily day-lengths and temperatures provided by the Nanjing Meteorological Bureau. The improved restricted two-stage multi-locus genome-wide association study using gene–allele sequences as markers (coded GASM-RTM-GWAS) was performed. (i) For DSF and its related ADLDSF and AATDSF, 130–141 genes with 384–406 alleles were explored, and for DFM and its related ADLDFM and AATDFM, 124–135 genes with 362–384 alleles were explored, in a total of six gene–allele systems. DSF shared more ADL and AAT contributions than DFM. (ii) Comparisons between the eco-region gene–allele submatrices indicated that the genetic adaptation from the origin to the geographic sub-regions was characterized by allele emergence (mutation), while genetic expansion from primary maturity group (MG)-sets to early/late MG-sets featured allele exclusion (selection) without allele emergence in addition to inheritance (migration). (iii) Optimal crosses with transgressive segregations in both directions were predicted and recommended for breeding purposes, indicating that allele recombination in soybean is an important evolutionary drive. (iv) Genes of the six traits were mostly trait-specific involved in four categories of 10 groups of biological functions. GASM-RTM-GWAS showed potential in detecting directly causal genes with their alleles, identifying differential trait evolutionary drives, predicting recombination breeding potentials, and revealing population gene networks. Full article
(This article belongs to the Special Issue Crop Stress Biology and Molecular Breeding 3.0)
Show Figures

Figure 1

20 pages, 2529 KB  
Article
Comprehensive Identification of Drought Tolerance QTL-Allele and Candidate Gene Systems in Chinese Cultivated Soybean Population
by Wubin Wang, Bin Zhou, Jianbo He, Jinming Zhao, Cheng Liu, Xianlian Chen, Guangnan Xing, Shouyi Chen, Han Xing and Junyi Gai
Int. J. Mol. Sci. 2020, 21(14), 4830; https://doi.org/10.3390/ijms21144830 - 8 Jul 2020
Cited by 17 | Viewed by 3309
Abstract
Drought is one of the most important factors affecting plant growth and productivity. The previous results on drought tolerance (DT) genetic system in soybean indicated a complex of genes not only few ones were involved in the trait. This study is featured with [...] Read more.
Drought is one of the most important factors affecting plant growth and productivity. The previous results on drought tolerance (DT) genetic system in soybean indicated a complex of genes not only few ones were involved in the trait. This study is featured with a relatively thorough identification of QTL-allele/candidate-gene system using an efficient restricted two-stage multi-locus multi-allele genome-wide association study, on two comprehensive DT indicators, membership index values of relative plant weight (MPW) and height (MPH), instead of a single biological characteristic, in a large sample (564 accessions) of the Chinese cultivated soybean population (CCSP). Based on 24,694 multi-allele markers, 75 and 64 QTL with 261 and 207 alleles (2–12/locus) were detected for MPW and MPH, explaining 54.7% and 47.1% of phenotypic variance, respectively. The detected QTL-alleles were organized into a QTL-allele matrix for each indicator, indicating DT is a super-trait conferred by two (even more) QTL-allele systems of sub-traits. Each CCSP matrix was separated into landrace (LR) and released cultivar (RC) sub-matrices, which showed significant differentiation in QTL-allele constitutions, with 58 LR alleles excluded and 16 new ones emerged in RC. Using the matrices, optimal crosses with great DT transgressive recombinants were predicted. From the detected QTL, 177 candidate genes were annotated and validated with quantitative Real-time PCR, and grouped into nine categories, with ABA and stress responders as the major parts. The key point of the above results is the establishment of relatively full QTL-allele matrices composed of numerous gene functions jointly conferring DT, therefore, demonstrates the complexity of DT genetic system and potential of CCSP in DT breeding. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

18 pages, 2316 KB  
Article
Dissecting the Genetic Architecture of Seed Protein and Oil Content in Soybean from the Yangtze and Huaihe River Valleys Using Multi-Locus Genome-Wide Association Studies
by Shuguang Li, Haifeng Xu, Jiayin Yang and Tuanjie Zhao
Int. J. Mol. Sci. 2019, 20(12), 3041; https://doi.org/10.3390/ijms20123041 - 21 Jun 2019
Cited by 24 | Viewed by 4304
Abstract
Soybean is a globally important legume crop that provides a primary source of high-quality vegetable protein and oil. Seed protein and oil content are two valuable quality traits controlled by multiple genes in soybean. In this study, the restricted two-stage multi-locus genome-wide association [...] Read more.
Soybean is a globally important legume crop that provides a primary source of high-quality vegetable protein and oil. Seed protein and oil content are two valuable quality traits controlled by multiple genes in soybean. In this study, the restricted two-stage multi-locus genome-wide association analysis (RTM-GWAS) procedure was performed to dissect the genetic architecture of seed protein and oil content in a diverse panel of 279 soybean accessions from the Yangtze and Huaihe River Valleys in China. We identified 26 quantitative trait loci (QTLs) for seed protein content and 23 for seed oil content, including five associated with both traits. Among these, 39 QTLs corresponded to previously reported QTLs, whereas 10 loci were novel. As reported previously, the QTL on chromosome 20 was associated with both seed protein and oil content. This QTL exhibited opposing effects on these traits and contributed the most to phenotype variation. From the detected QTLs, 55 and 51 candidate genes were identified for seed protein and oil content, respectively. Among these genes, eight may be promising candidate genes for improving soybean nutritional quality. These results will facilitate marker-assisted selective breeding for soybean protein and oil content traits. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

Back to TopTop