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Abstract: Salinization of cultivated soils may result in either high salt levels or alkaline conditions,
both of which stress crops and reduce performance. We sampled genotypes included in the Northeast
China soybean germplasm population (NECSGP) to identify possible genes that affect tolerance to
alkaline soil conditions. In this study, 361 soybean accessions collected in Northeast China were
tested under 220 mM NaHCO3:Na2CO3 = 9:1 (pH = 9.8) to evaluate the alkali-tolerance (ATI) at
the seedling stage in Mudanjiang, Heilongjiang, China. The restricted two-stage multi-locus model
genome-wide association study (RTM-GWAS) with gene–allele sequences as markers (6503 GASMs)
based on simplified genome resequencing (RAD-sequencing) was accomplished. From this analysis,
132 main effect candidate genes with 359 alleles and 35 Gene × Environment genes with 103 alleles
were identified, explaining 90.93% and 2.80% of the seedling alkali-tolerance phenotypic variation,
respectively. Genetic variability of ATI in NECSGP was observed primarily within subpopulations,
especially in ecoregion B, from which 80% of ATI-tolerant accessions were screened out. The biological
functions of 132 candidate genes were classified into eight functional categories (defense response,
substance transport, regulation, metabolism-related, substance synthesis, biological process, plant
development, and unknown function). From the ATI gene–allele system, six key genes–alleles were
identified as starting points for further study on understanding the ATI gene network.

Keywords: alkali tolerance; gene–allele matrix; gene–allele sequence marker (GASM); gene function;
Northeast China soybean germplasm population (NECSGP); optimal cross design; restricted two-stage
multilocus genome-wide association study (RTM-GWAS); soybean (Glycine max (L.) Merr.)

1. Introduction

Soybean [Glycine max (L.) Merr.] originated in ancient central China [1] and was then
disseminated to Northeast China, including Heilongjiang, Jilin, Liaoning, and the eastern
part of the Inner-Mongolia provinces, where cultivation and breeding flourished with its
germplasm population formed and exchanged abroad [2]. At present, soybean cultivars
currently grown in the Western Hemisphere and other parts of the world were derived
mainly from the germplasm generated in Northeast China [3,4]. Therefore, the Northeast
China soybean germplasm population (NECSGP) is an important gene pool not only in
Northeast China but also in worldwide soybean production.
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About one-third of the world’s irrigated land was affected by salinization [5,6]. The
UNESCO and FAO indicated that the area of saline–alkali soil in the world exceeds
9.54 × 108 hm2, of which about 60% is alkaline (high pH, dominated by sodium bicar-
bonate (NaHCO3) and sodium carbonate (Na2CO3)) [7]. Northeast China is one of the
world’s three major soda saline–alkali soil areas [7], accounting for 39.59% of the total
cultivated land (the proportion of saline–alkali soil area and cultivated land in Northeast
China is 1.141 × 107 hm2/2.882 × 107 hm2 = 35.95%). Salinization caused two changes to
the land, high salt content (more than 0.6%) and high alkaline or pH value (higher than
8.5). Alkali has a more serious effect on plants than neutral salt. Soil alkalization (including
natural and anthropogenic) can reduce soil osmotic potential, cause plant ion imbalance,
cause physiological process disorder, severely inhibit plant growth, and ultimately leads to
a serious decline of seed yield and quality and can even lead to death [8].

In solving the plight of insufficient cultivated land, an effective way is to utilize
saline–alkali tolerant cultivars [9]. Our previous research showed that there was no sig-
nificant correlation between saline tolerance and alkali tolerance at the seedling stage
(r = 0.044~0.071), indicating these two traits are different and relatively independent [10].
Compared to the research on plant saline tolerance, there are relatively few studies on
plant alkali tolerance, especially for soybean. Wang et al. [11] indicated that in rice the
gene regulatory network involved in alkali stress was more complex than that in saline
stress. Alkali stress at the seedling stage may reduce the water absorption capacity of rice
plants, and a high pH environment may affect plant homeostasis and metabolic balance,
and ultimately affect plant growth and development [12]. Rogovska reported that high
soil pH (pH > 8.2), accompanied by carbonate concentration stress from 2.5% to 30%, may
cause iron deficiency chlorosis symptoms in soybeans and seed yield reduction up to 45%
or more [13]. In searching for the genetic mechanism, four types of alkali-tolerance genes
have been reported, i.e., intracellular pH regulation genes, organic-acid-metabolism-related
genes, water-metabolism-related genes, and antioxidative-stress-related genes [14].

Soybean alkali tolerance is a complex quantitative trait. Linkage mapping based
on biparental segregating populations is a common method in quantitative trait locus
(QTL) mapping. With the advance of genome sequencing and the establishment of high-
throughput single nucleotide polymorphism (SNP) technology [15], the genome-wide
association study (GWAS) has played an important role in the genetic analysis of agronomic
traits in soybean, including growth periods, 100-seed weight, seed oil content, seed protein
content, sudden death syndrome, water use efficiency, etc. [16–20].

In order to make the GWAS better, the restricted two-stage multi-locus genome-wide
association study (RTM-GWAS) was developed [21]. This study uses the genomic segment
SNPLDB (SNP linkage disequilibrium block) with its multiple haplotypes as markers.
Two stages were performed in the GWAS; in the first stage, general linear regression was
conducted using the single locus model for pre-selection of markers, and in the second stage,
stepwise regression using the multi-locus model was conducted with forward selection
and backward deletion for identifying QTLs with their alleles. The total contribution of
the selected QTLs is restricted by the experiment heritability value for controlling false
positives and false negatives [21]. This procedure has been used to identify QTLs of soybean
isoflavones, 100-seed weight, flowering date, etc. [22].

From the identified QTLs, the candidate genes located in/around the QTL were
annotated. In this way, the genes to be selected for annotation are probably uncertain.
To improve this, based on genome-wide sequencing, the gene–allele segments were used
directly as genomic markers to replace the SNPLDBs. In this case, the identified QTL is
in fact the gene marker itself, without additional requirement to infer from a QTL to a
gene. This RTM-GWAS based on a gene–allele segment marker (GASM) is called GASM-
RTM-GWAS, which has been used in identifying the gene–allele system for shade tolerance
under soybean–maize inter-/relay-cropping in the southern China soybean germplasm [22].
These studies have demonstrated that the GASM-RTM-GWAS procedure was powerful
and efficient in identifying a gene–allele system of complex traits and in predicting optimal
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crosses. Therefore, this method will be used in the present study on the gene–allele system
of alkali-tolerance in the NECSGP.

The essence of crop breeding is the process of aggregating as many elite gene–alleles
of interested trait(s) as possible into one variety, for which designing the optimal cross
is the key to the success of breeding [23,24]. From the above, GASM-RTM-GWAS can
provide all the genetic information on genes, their alleles, and the allele effects for each
variety/accession in the germplasm/breeding population, from which all the crosses
among the varieties/accessions can be predicted and practiced [25–29].

Excavating the alkali-tolerant resources and identifying elite genes/alleles in the
Northeast China soybean germplasm is a key step to the development of alkali-tolerant
cultivars for soybean production in Northeast China. This study aimed at the following
targets: (i) on the basis of accurate evaluation of alkali-tolerance at the seedling stage of
the NECSGP, using the alkali tolerance index (relative value of seedling dry weight under
alkali stress to that under no alkali stress, ATI) as an indicator to excavate a germplasm
with excellent seedling alkali tolerance; (ii) using GASM-RTM-GWAS to identify ATI genes
with their alleles and allele effects conferring alkali-tolerance at the seedling stage of the
NECSGP and to reveal the differentiation and genetic dynamics of the ATI gene–allele
system among geographic subgroups; (iii) to predict the ATI recombination potential and
to design the optimal combinations; and (iv) to identify the key ATI candidate genes and
elite alleles for subsequent gene cloning and regulatory network research.

2. Results
2.1. Wide Variation of Alkali-Tolerance in the NECSGP

Through the expansion process of soybean in different subregions in Northeast China
(from ERD to ERB, then to ERA and ERC, see the note of Table 1, Supplementary Figure S2
for details), a subregional germplasm with different ecological characteristics gradually
formed. In the NECSGP, the comprehensive indicator, the ATI (the larger the ATI value the
higher the tolerance to alkali conditions), showed a wide phenotypic variation under three
environments, ranging from 0.36 to 0.86, with the genotypic coefficient of variation (GCV)
equal to 19.96% and the heritability value as high as 98.43% (Table 1, Figure 1a). Analysis of
variance showed that the variation among environments (E), genotypes (G), and G × E was
significant (p < 0.01) (Table S3), indicating that the ATI is mainly controlled by genetic effects
but also affected by environment conditions. The ATI values at the seedling stage in each
of the four ecological/geographic subregions (ERA−ERD) varied greatly and significantly,
ranging from 0.46 to 0.86, 0.46 to 0.86, 0.37 to 0.83, and 0.39 to 0.85, with their genotypic
coefficient of variation equal to 12.97%, 14.83%, 21.33%, and 16.95%, respectively, but
without significant difference among the subpopulation averages. This suggests significant
variation within each subregion but not among subregions (Tables 1 and S2).

Table 1. Frequency distribution of ATI in the NECSGP.

ENV. †
Mid-Point Classic

SUM Mean Range GCV ‡

(%)
h2 §

(%)0.38 0.43 0.48 0.53 0.58 0.63 0.68 0.73 0.78 0.83 0.88

Total 3 9 16 27 48 50 85 48 48 19 7 361 0.65 0.36~0.86 19.96 98.43

ERA 3 3 9 10 16 7 10 2 1 61 0.64 a * 0.46~0.86 12.97 94.62
ERB 1 6 6 12 30 24 58 30 33 16 14 230 0.66 a 0.46~0.86 14.83 96.57
ERC 1 2 1 1 1 2 8 0.69 a 0.37~0.83 21.33 93.71
ERD 1 3 2 4 11 5 14 7 8 3 4 62 0.64 0.39~0.85 16.95 95.36

Note: † Env.: ERA: Ecoregion of Heilongjiang valleys; ERB: Ecoregion of Songhuajiang valleys; ERC: Ecoregion of
Nenjiang valleys; ERD: Ecoregion of Liaohe valleys (Please See Figure S2 for details). The dissemination path
of soybeans in Northeast China was from ERD to ERB, then from ERB to ERA and ERC. The upper right corner
shows the location of the Northeast region in China. ‡ GCV: Genetic Coefficient of Variation. § h2: heritability
value calculated from the ANOVA. * a: Significance level at 0.05 level compared to ERD.
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Figure 1. ATI gene–allele system identified in the NECSGP using GASM-RTM-GWAS. (a): Fre-
quency distribution of the ATI at the seedling stage averaged over three environments in the 
NECSGP. (b): Manhattan (left) and Q-Q plot (right) of ATI candidate genes identified in the 
NECSGP. The horizontal solid red line indicates the threshold of p < 0.05, the upper colored dots are 
the significant candidate genes mapped in different chromosomes. (c) Phenotypic contribution of 
genes detected for ATI. The vertical axis indicates genetic contribution of a gene, while for the hori-
zontal axis, the genes with a green color have an R2 value ≥ 1.0% and for those with a red color R2 < 
1.0%. (d) Distribution of allele effect values of ATL alleles of each gene. (e) Frequency distribution 
of allele number per ATI gene. (f) Recombination potential prediction of ATI in the NECSGP based 
on the linkage model. (g) Gene ontology classifications of ATI in the NECSGP; Ⅰ: Defense response; 
Ⅱ: Material transport; Ⅲ: Regulation related; Ⅳ: Metabolic process; Ⅴ: Biosynthetic process; Ⅵ: Bi-
ological process; Ⅶ: Development; and Ⅷ: unknown. (h) ATI gene–allele matrix for the NECSGP. 
The horizontal axis represents the varieties of each subregion which are arranged in ascending order 
based on their phenotypic value, while the vertical axis represents the alleles on the chromosomes. 
The allelic effects are represented by different colors; warm colors represent positive values and cool 
colors represent negative values. The darker the color, the greater the absolute value of the ATI 
value. (i) ATI gene–allele matrix of the top 10 tolerant and top ten sensitive varieties at the seedling 
stage. 

  

Figure 1. ATI gene–allele system identified in the NECSGP using GASM-RTM-GWAS. (a): Frequency
distribution of the ATI at the seedling stage averaged over three environments in the NECSGP.
(b): Manhattan (left) and Q-Q plot (right) of ATI candidate genes identified in the NECSGP. The
horizontal solid red line indicates the threshold of p < 0.05, the upper colored dots are the significant
candidate genes mapped in different chromosomes. (c) Phenotypic contribution of genes detected for
ATI. The vertical axis indicates genetic contribution of a gene, while for the horizontal axis, the genes
with a green color have an R2 value ≥ 1.0% and for those with a red color R2 < 1.0%. (d) Distribution
of allele effect values of ATL alleles of each gene. (e) Frequency distribution of allele number per
ATI gene. (f) Recombination potential prediction of ATI in the NECSGP based on the linkage model.
(g) Gene ontology classifications of ATI in the NECSGP; I: Defense response; II: Material transport;
III: Regulation related; IV: Metabolic process; V: Biosynthetic process; VI: Biological process; VII:
Development; and VIII: unknown. (h) ATI gene–allele matrix for the NECSGP. The horizontal axis
represents the varieties of each subregion which are arranged in ascending order based on their
phenotypic value, while the vertical axis represents the alleles on the chromosomes. The allelic
effects are represented by different colors; warm colors represent positive values and cool colors
represent negative values. The darker the color, the greater the absolute value of the ATI value.
(i) ATI gene–allele matrix of the top 10 tolerant and top ten sensitive varieties at the seedling stage.

From the NECSGP, the top ten alkali-tolerant and top ten alkali-sensitive varieties
were selected. The former were represented by ATI values of 0.85 (0.83–0.86) whereas the
latter had a ATI value of 0.42 (0.36–0.45) (Table S3).
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2.2. Gene–Allele System of Alkali-Tolerance in the NECSGP

In GASM-RTM-GWAS, the G × E model was adopted due to its significance based
on an ANOVA. Using the 6503 GASMs in the RTM-GWAS procedure, in the first stage,
3246 GASMs were preselected for the second stage analysis, and then 132 GASMs/genes
were detected for ATI (Table 2, Figure 1b,c). These 132 detected GASMs using the QEI
model were distributed on all the 20 chromosomes, ranging from 2 GASMs on Chromosome
4 to 14 GASMs on Chromosome 18 (Figure 1b, Table 2). The genetic contribution (R2) of
individual GASMs/genes ranged from 0.1% to 4.66% (Figure 1c); with Glyma06g07980
having the largest contribution rate. Among these GASMs/genes, 28 were the large-
contribution major genes (LC-major gene) with R2 values greater than 1.0% (Tables 2 and 3).
Of the 132 ATI genes, a total of 359 alleles were detected, with 2–7 alleles per gene (Figure 1e,
Table 2), with Glyma14g10780 having 7 alleles (the most). Among these alleles, 183 had
positive effects ranging from 0.001 to 0.140, and 176 had negative effects ranging from
−0.115 to −0.001 (Table 3). In total, 70 candidate genes were detected with more than two
alleles (Table 2, Figure 1e).

Table 2. The ATI gene–allele system identified via GASM-RTM-GWAS in the NECSGP.

Gene
Code Gene Name AN

R2 (%)
Gene
Code Gene Name AN

R2 (%)

Main
Effect G × E Main

Effect G × E

gATI.1.1 Glyma01g02580 2 1.32 gATI.10.8 Glyma10g37420 2 0.56 0.04
gATI.1.2 Glyma01g04515 3 0.09 gATI.11.1 Glyma11g01253 3 0.05
gATI.1.3 Glyma01g22861 2 0.19 gATI.11.2 Glyma11g03580 2 0.11
gATI.1.4 Glyma01g30320 2 0.28 gATI.11.3 Glyma11g07830 4 0.71
gATI.1.5 Glyma01g36070 2 1.69 gATI.11.4 Glyma11g15140 2 0.01 0.05
gATI.2.1 Glyma02g00280 3 0.05 0.04 gATI.11.5 Glyma11g27510 2 0.1
gATI.2.2 Glyma02g05640 3 0.08 gATI.12.1 Glyma12g03180 3 0.10
gATI.2.3 Glyma02g06730 5 3.48 0.07 gATI.12.2 Glyma12g08010 2 0.26
gATI.2.4 Glyma02g08790 2 0.03 gATI.12.3 Glyma12g30080 3 0.24
gATI.2.5 Glyma02g09130 3 0.70 gATI.13.1 Glyma13g00490 3 0.38 0.04
gATI.2.6 Glyma02g09240 3 0.41 gATI.13.2 Glyma13g01900 2 0.04
gATI.2.7 Glyma02g11151 4 0.78 0.08 gATI.13.3 Glyma13g23910 3 0.64
gATI.2.8 Glyma02g11335 4 1.28 gATI.13.4 Glyma13g29225 3 0.12
gATI.2.9 Glyma02g14175 2 0.12 gATI.13.5 Glyma13g29360 2 0.45 0.02
gATI.2.10 Glyma02g15470 3 0.28 gATI.13.6 Glyma13g29520 2 0.04
gATI.2.11 Glyma02g16850 3 0.39 gATI.13.7 Glyma13g40690 2 1.03
gATI.2.12 Glyma02g37010 2 0.05 gATI.13.8 Glyma13g42650 3 0.24 0.04
gATI.2.13 Glyma02g38673 3 0.19 gATI.14.1 Glyma14g04260 3 0.14
gATI.2.14 Glyma02g40220 3 0.06 gATI.14.2 Glyma14g10780 7 0.98
gATI.2.15 Glyma02g44350 2 0.24 gATI.14.3 Glyma14g20110 2 0.31
gATI.3.1 Glyma03g07890 2 0.74 gATI.14.4 Glyma14g36130 2 0.25
gATI.3.2 Glyma03g27770 2 2.23 gATI.14.5 Glyma14g37280 3 2.84 0.05
gATI.3.3 Glyma03g30270 4 2.14 0.04 gATI.14.6 Glyma14g38720 2 0.05
gATI.3.4 Glyma03g36720 2 0.04 gATI.15.1 Glyma15g02310 2 0.35
gATI.3.5 Glyma03g37221 2 0.33 0.08 gATI.15.2 Glyma15g04006 3 0.32
gATI.4.1 Glyma04g10720 2 2.00 gATI.15.3 Glyma15g07590 3 0.33
gATI.4.2 Glyma04g43300 2 2.88 gATI.15.4 Glyma15g16830 2 0.03
gATI.5.1 Glyma05g19630 2 0.02 0.02 gATI.15.5 Glyma15g19900 2 0.03
gATI.5.2 Glyma05g24760 3 0.09 gATI.15.6 Glyma15g27480 5 0.36
gATI.5.3 Glyma05g27300 2 0.94 gATI.15.7 Glyma15g27750 2 0.37
gATI.5.4 Glyma05g27690 5 0.20 0.08 gATI.15.8 Glyma15g32540 2 0.03
gATI.5.5 Glyma05g32890 4 0.81 gATI.16.1 Glyma16g08960 2 1.43
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Table 2. Cont.

Gene
Code Gene Name AN

R2 (%)
Gene
Code Gene Name AN

R2 (%)

Main
Effect G × E Main

Effect G × E

gATI.6.1 Glyma06g01490 2 0.49 0.03 gATI.16.2 Glyma16g28270 3 0.91
gATI.6.2 Glyma06g05300 3 1.82 gATI.16.3 Glyma16g32650 5 0.89
gATI.6.3 Glyma06g07980 3 4.66 gATI.16.4 Glyma16g33831 4 0.10
gATI.6.4 Glyma06g17410 2 0.08 gATI.17.1 Glyma17g07120 3 1.66
gATI.6.5 Glyma06g19756 2 0.20 gATI.17.2 Glyma17g08230 2 0.95
gATI.6.6 Glyma06g47010 4 0.14 gATI.17.3 Glyma17g10650 4 0.39
gATI.7.1 Glyma07g00400 4 0.73 gATI.17.4 Glyma17g15720 2 0.03
gATI.7.2 Glyma07g05620 4 2.45 0.03 gATI.17.5 Glyma17g16831 3 0.11 0.11
gATI.7.3 Glyma07g06640 2 0.10 gATI.17.6 Glyma17g33020 2 0.09
gATI.7.4 Glyma07g07360 6 0.12 0.05 gATI.17.7 Glyma17g33930 2 2.56
gATI.7.5 Glyma07g08290 2 0.05 gATI.17.8 Glyma17g36130 2 1.46 0.08
gATI.7.6 Glyma07g10280 2 0.08 gATI.18.1 Glyma18g01490 2 2.71
gATI.7.7 Glyma07g14234 2 0.06 gATI.18.2 Glyma18g03930 2 0.02
gATI.7.8 Glyma07g31130 3 1.48 0.12 gATI.18.3 Glyma18g03975 2 0.68
gATI.7.9 Glyma07g37810 2 0.16 gATI.18.4 Glyma18g04870 2 0.35
gATI.7.10 Glyma07g38180 3 2.90 gATI.18.5 Glyma18g11512 4 0.15
gATI.8.1 Glyma08g04620 4 0.18 gATI.18.6 Glyma18g15001 3 0.03 0.09
gATI.8.2 Glyma08g10001 3 0.02 gATI.18.7 Glyma18g16761 3 0.27
gATI.8.3 Glyma08g18320 2 0.38 gATI.18.8 Glyma18g16780 2 0.71
gATI.8.4 Glyma08g42810 4 0.05 gATI.18.9 Glyma18g28130 2 3.00
gATI.8.5 Glyma08g45301 3 0.65 gATI.18.10 Glyma18g40780 3 1.71
gATI.8.6 Glyma08g45501 2 0.13 gATI.18.11 Glyma18g46101 3 2.62
gATI.8.7 Glyma08g45610 2 0.72 0.15 gATI.18.12 Glyma18g49450 2 0.12
gATI.9.1 Glyma09g12180 3 0.03 gATI.18.13 Glyma18g50670 4 0.17 0.04
gATI.9.2 Glyma09g15860 2 0.03 gATI.18.14 Glyma18g53285 3 2.06 0.07
gATI.9.3 Glyma09g33220 4 2.52 0.05 gATI.19.1 Glyma19g31900 4 1.28
gATI.9.4 Glyma09g40690 3 0.68 gATI.19.2 Glyma19g35820 2 0.78
gATI.9.5 Glyma09g41821 3 0.38 0.03 gATI.19.3 Glyma19g42710 2 0.04

gATI.10.1 Glyma10g06480 2 0.08 gATI.19.4 Glyma19g43880 2 0.06
gATI.10.2 Glyma10g06600 2 0.80 gATI.20.1 Glyma20g01460 2 0.22 0.01
gATI.10.3 Glyma10g07601 2 1.32 gATI.20.2 Glyma20g24740 5 0.95 0.06
gATI.10.4 Glyma10g14620 2 0.06 gATI.20.3 Glyma20g30360 2 0.97
gATI.10.5 Glyma10g30100 3 0.75 0.04 gATI.20.4 Glyma20g30870 2 0.17
gATI.10.6 Glyma10g30320 2 0.27

gATI.10.7 Glyma10g31560 2 1.32 0.02 Total 132
a 359
(2.72) 90.94 2.80

Note: Gene code, such as gATI.1.1, where ATI means alkali tolerance, the first .1 represents Chromosome 1 and the
second .1 represents its order on the chromosome according to its physical position. The position corresponds to
the Williams 82 reference genome version 1 (Wm82.a1). ATI: alkali tolerance index. R2: contribution to phenotypic
variance of a gene. Main effect: main effect gene; G × E: gene–environment interaction. a: The number before
the parentheses represents the number of total alleles, and the number in the parentheses represents the average
number of alleles per gene.

Based on the GASM-RTM-GWAS results, the composition of the alkali-tolerance gene
system in the NECSGP was explored (Tables 2 and 3). The detected genes are composed
of three types based on gene effects: genes with only genetic effects, genes with only
G × E effects, and genes with both G and G × E effects (Table 2). For the ATI, 98.43%
(heritability value) of the phenotypic variation (PV) was explained by main-effect genetic
variation, of which 59.85% of the total R2 was accounted by 28 LC-major genes and 31.08%
was accounted by 98 SC-major genes, with a total of 126 genes detected, with main-effect
genes explaining 90.94% PV and the remaining 98.43 − 90.94 = 7.49% PV might be explained
by the collective of unmapped minor genes. The G × E genes explained only 2.80% PV. The
above results help us understand that alkali tolerance is a genetically complex trait.
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Table 3. Summary of ATI gene–allele information in the NECSGP.

Gene Main Effect % G × E %

Significant 90.94 (126, 0.01~4.66) 2.80 (35, 0.01~0.15)
LC major Gene 59.86 (28, 1.03~4.66)
SC major Gene 31.08 (98, 0.01~0.98) 2.80 (35, 0.01~0.15)

Unmapped minor Gene 7.49
Total genetic contribution h2 98.43 2.80

Allele Main Effect G × E

Positive allele 131 (0.0004~0.1420) 52 (0.001~0.107)
Negative allele 125 (−0.1150~−0.0010) 51 (−0.108~−0.001)

Total 256 (−0.1150~0.1420) 103 (−0.108~0.107)

Note: In the upper part for genes, LC-major Gene: large-contribution major Gene with genetic contribution (R2)
greater than 1.0%. SC-major Gene, small-contribution major Gene with R2 less than 1.0%. In columns of Main
effect and G × E, the number outside parentheses is the total R2 of the corresponding genes, the first number
in the parentheses is the number of genes, the second is a range of R2 for the individual genes. The R2 of the
unmapped minor gene is calculated from the total contribution (h2)—the contribution of main effect genes. In
the lower part for alleles, the number outside of the parentheses is the number of alleles while the number in the
parentheses is the range of the allele effect.

2.3. ATI Gene–Allele Matrix as a Compact Genetic Structure of the NECSGP

All the detected ATI genes–alleles, with their effects from the 361 accessions, were
organized into a gene–allele matrix (Figure 1h), which is a compact form of the genetic
structure of the NECSGP as well as that of each accession. The matrix showed that all
the accessions contained both positive and negative alleles (Figure 1d), indicating a great
recombination potential for transgressive segregants in the population (Figure 1h).

In this study, the top 10 alkali-tolerant varieties and 10 alkali-sensitive varieties
were selected for comparison to clarify the differences in their alkali tolerance
gene–allele structures (Figure 1i, Table S3). The number and effect values of positive
alleles carried in alkali-tolerant accessions were more than those in alkali-sensitive ac-
cessions (69.4 and 1.83 vs. 64.1 and 1.62, respectively). Whereas the average number and
absolute effect value of negative alleles carried in alkali-tolerant accessions is less than that
of alkali-sensitive accessions (62.6 and −1.69 vs. 68.0 and −1.84, respectively). Thus, the
alkali-tolerant varieties contain more elite positive alleles and less negative alleles than
alkali-sensitive varieties. The major gene–allele constituents of the alkali-tolerant accessions
were different from each other, whereas the sensitive varieties also contain elite alleles that
can be utilized (Figure 1i, Table S3).

2.4. Population Genetic Differentiation among the Four Subregions

The NECSGP gene–allele matrix was separated into its components of ERA–ERD.
In Northeast China, ERD is the original ecoregion at the south, while ERB is the derived
ecoregion based on ERD, and in turn, ERC and ERA were derived from ERB according
to the dissemination paths of soybean. There were 200 alleles passed down from ERD to
ERB, ERC, and ERA jointly, while 43 alleles in ERB, 27 alleles in ERA, and 0 alleles in ERC
were different from those in ERD, indicating that the major changes were in ERB and ERA
(Figure 2a).

In detailed changes, ERD contained 317 alleles (150 negative, 167 positive), which
constituted basically the original genetic basis of the NECSGP (Table 4). Comparing ERB
to ERD, in addition to 316 (153, 163) or 88.3% (315/358) of alleles being passed down, the
allele number was enriched from 317 (150, 167) to 358 (176, 182) with 67 alleles changed,
including 42 (22, 20) or 11.7% (42/358) of alleles that emerged (may including allele
introduction) and only 1 (1, 0) or 0.3% (1/358) of alleles that were excluded. (Here, we
could not distinguish if the new alleles were from allele emergence or allele introduction,
so “emerged or introduced” was used, the same as below). Comparing ERC to ERD, in
addition to 204 (100, 104) or 64.4% (204/317) of alleles being passed down, the allele number
decreased to 210 (109, 101) with 119 alleles that changed, including 6 (1, 5) or 1.9% of alleles
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that emerged or were introduced and 113 (54, 59) or 35.6% (113/317) of alleles that were
excluded. Comparing ERA to ERD, in addition to 289 (143, 146) or 91.2% (289/317) of
alleles that were passed down, the allele number was similar with 316 (159, 157) with 55
(22, 33) alleles that changed, including 27 (11, 16) or 8.5% (27/317) of alleles that emerged
or were introduced and 28 (11, 17) or 8.8% (28/317) of alleles that were excluded.
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Figure 2. Venn diagram of allele number shared by subregions and protein–protein interaction
network of the ATI gene system in the NECSGP. Note: (a) Venn diagram of allele number shared by
subregions. (b) Protein–protein interaction (PPI) networks. (i) The largest PPI network, containing
41 genes/proteins; the red and yellow nodes in the middle part with more links are hub genes. (ii) the
blue nodes comprise the second largest network with 7 genes/proteins. (iii,iv) the deep pink nodes
and bright green nodes, represent two small networks, each with only two genes/proteins.

While comparing ERA to ERB, in addition to 315 (159, 156) or 88.0% (315/358) of
alleles being passed down, the allele number decreased from 358 (176, 182) to 316 (159, 157),
with 44 (20, 24) alleles having changed, including only 1 (0, 1) allele that emerged or was
introduced and 43 (19, 24) or 12.0% (43/358) of alleles that were excluded. Comparing ERC
to ERB, in addition to 210 (109, 101) or 58.7% (210/358) of alleles that were passed down,
the allele number was decreased to 210 (101, 109) with 148 (74, 74) alleles that changed,
including 0 or 0% of alleles that emerged or were introduced and 148 (74, 74) or 41.3%
(148/358) of alleles that were excluded, a large number of alleles were not passed down
to ERC.
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Table 4. The allele changes in subregions compared to ERD and then to ERB.

Contrast Total Alleles
Alleles Changed

Inherited Emerged/Introduced Excluded Changed

ERB vs. ERD 358 (176, 182) vs. 317 (150, 167) 316 (153, 163) 42 (22, 20) 1 (1, 0) 43 (23, 20)
ERC vs. ERD 210 (109, 101) vs. 317 (150, 167) 204 (100, 104) 6 (1, 5) 113 (54, 59) 119 (55, 64)
ERA vs. ERD 316 (159, 157) vs. 317 (150, 167) 289 (145, 144) 27 (11, 16) 28 (14, 14) 55 (25, 30)

RA vs. ERB 316 (159, 157) vs. 358 (176, 182) 315 (156, 159) 1 (1, 0) 43 (19, 24) 44 (20, 24)
ERC vs. ERB 210 (109, 101) vs. 358 (176, 182) 210 (101, 109) 0 148 (74, 74) 148 (74, 74)

Note: In the total alleles column, the number outside the parentheses is the number of total alleles and the number
in parentheses is the number of negative and positive alleles, respectively. Emerged/introduced means alleles
that emerged or were introduced compared to alleles in ERD or ERB; the number in parentheses is the number of
negative and positive alleles, respectively, while the number outside of parentheses is the sum of them. In the
changed column is the sum of emerged/introduce alleles and excluded alleles.

There was no significant difference among subregion averages and ranges, but there
was ATI gene–allele component changes which did not affect the sub-region alkali-tolerance
average. The major change stage was from ERD to ERB. At this stage, the total ATI alleles
increased, mainly new allele emergence happened, whereas allele exclusions were very
few. Based on this, recombination also caused the progress. At the next stage, from ERB to
ERA and ERC, the total ATE alleles decreased, especially for ERC, which was mainly due
to the limited number of varieties introduced or developed. Almost no new allele emerged
and both positive and negative alleles were excluded, indicating not very much effort has
been put on alkali-tolerance breeding yet, especially in ERC which is the key subregion
with an alkali problem. The above cases were supported by the fact that the selected best
alkali-tolerant accessions were mainly from ERB (7 out of 8). Under this situation, the
natural progress of alkali-tolerance from ERD to ERB was mainly due to allele emergence or
introduction and emergence-based recombination. From ERD to ERA, 27 alleles increased,
these likely have been inherited from ERB because very few alleles increased from ERB to
ERA. In addition, both positive and negative alleles emerged and were excluded at almost
all stages, despite the similar amount of alleles between the two sub-regions, this further
demonstrates the selection direction for ATI tolerance throughout history was neutral or
not directional.

2.5. Recombination Potential and Prediction of Optimal Crosses for Alkali-Tolerance Improvement
in the NECSGP

Based on the ATI gene–allele matrix, a total of 64,980 biparental crosses among the
361 varieties were predicted in silico via the linkage model and independent assortment
model, respectively, using the 75th percentile as the indicator with a population size of
2000 homozygous lines for each cross (Figure 1f). The prediction was also generated for
each subpopulation (Table 5). Using the linkage model, the predicted 75th percentile of the
NECSP was 0.75 on average, ranging from 0.47 to 1.03, with the best segregants over the
highest variety exhibiting a 75th percentile value of 0.86. Those of the subregions were 0.97,
1.00, 0.92, and 0.93 for ERA-ERD, respectively, for their respective most tolerant variety. The
predicted recombination potentials using the linkage model were similar to those generated
using the independent assortment model, which suggests that there is no obvious linkage
obstacle in the population, further confirming that breaking down the linkage for ATI in
the NECSGP is not necessarily required.

From the prediction, the 10 top crosses are listed in Table 6, in which a total of eight
parents were involved. Among the eight parents, Jiyu 93 (ATI = 0.81) was involved in
five crosses and was the best, followed by Amsoy (four crosses) and Nenfeng 15 (three
crosses). Among the ten crosses, the parental phenotypic values of ATI ranged from 0.81
to 0.86, while the predicted 75th percentile values of progenies ranged from 0.99 to 1.03,
indicating that a great transgression might be expected from these crosses. These crosses
are recommended for ATI breeding in Northeast China. In addition, seven out of the
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eight parents were from ERB, indicating more alkali-tolerance resources are held in this
subpopulation.

Table 5. Predicted recombination potential of ATI in the NECSGP and its subregions.

Region/
Subregion

ATI Range
of

Accessions

No. of
Predicted
Crosses

Predicted via the Linkage Model Predicted via the Independent Assortment Model

Mean Range
High

Tolerance
Cross No.

(ATI > 0.86)

Percentage
(%) Mean Range

High
Tolerance
Cross No.

(ATI > 0.86)

Percentage
(%)

Total 0.36~0.86 64,980 0.75 0.47~1.03 4388 6.75 0.75 0.48~0.98 4580 7.05
ERA 0.46~0.86 2775 0.74 0.53~0.97 150 5.41 0.74 0.54~0.96 145 5.23
ERB 0.46~0.86 32,896 0.75 0.47~1.00 2096 6.37 0.76 0.48~0.98 2190 6.66
ERC 0.37~0.83 28 0.79 0.62~0.92 6 21.42 0.79 0.62~0.94 6 21.43
ERD 0.39~0.85 210 0.76 0.55~0.93 19 9.05 0.76 0.56~0.93 26 12.38

Note: The predicted value is the 75th percentile. Percentage (%): the percentage of high-tolerance crosses to the
total number of crosses.

Table 6. The predicted top ten crosses for ATI expressed in 75th percentile values of progenies (Based
on linkage model).

P1 P2 Predicted Cross (75th Percentile)

Code Name MG ATI Code Name MG ATI Mean of
Parents SD (%) Predicted

ATI

F134 Nenfeng 15 I 0.82 F81 Amsoy I 0.84 0.84 26.07 1.03
F243 Kenjian 35 0 0.85 F81 Amsoy I 0.84 0.85 21.48 1.00
F243 Kenjian 35 0 0.85 F81 Amsoy I 0.84 0.85 21.48 1.00
F104 Jiyu 93 I 0.81 F284 Mufeng No. 3 0 0.86 0.83 23.12 0.99
F104 Jiyu 93 I 0.81 F134 Nenfeng 15 I 0.82 0.82 25.49 0.99
F104 Jiyu 93 I 0.81 F387 Jiyu 86 III 0.83 0.82 23.11 0.99
F134 Nenfeng 15 I 0.82 F284 Mufeng No. 3 0 0.86 0.84 20.9 0.99
F104 Jiyu 93 I 0.81 F243 Kenjian 35 0 0.85 0.82 23.53 0.99
F233 Kennong 24 I 0.82 F81 Amsoy I 0.84 0.84 20.06 0.99
F104 Jiyu 93 I 0.81 F135 Nenfeng 17 0 0.81 0.82 24.08 0.99

Note: P1 and P2 represent the parents of the predicted optimal cross; MG is the maturity group to which the
parents belong; SD represents the standard deviation of the cross with 10,000 progenies per cross.

2.6. The Candidate Gene System of Alkali-Tolerance Inferred from Identified GASMs

Based on the reference genome of Glyma.Wm82. a1. v1.1 (SoyBase, http://www.
soybase.org, accessed on 17 May 2022), the gene ontology enrichment analysis indicated
that the 132 ATI candidate genes were grouped into eight biological function categories.
These include defense response (category I, 22 genes), material transports (category II,
4 genes), regulation related (category III, 11 genes), substance metabolism process (category
IV, 25 genes), biosynthetic process (category V, 9 genes), biological process (category VI,
27 genes), development (category VII, 10 genes), and gene function unknown (category
VIII, 14 genes), where category I, IV, and VI were the major categories (Table S4, Figure 1g).
Therefore, ATI is controlled by a great number of genes involving a series of biological
functions, or a complex of gene systems.

In order to explore the interactive relationship among the identified ATI candidate
genes, the protein–protein interaction (PPI) network was analyzed using the STRING
procedure based on Arabidopsis homologous proteins (https://cn.string-db.org/, accessed
on 25 May 2022) for the 132 ATI genes/proteins under medium confidence (interaction
score 0.400). Since only 52 proteins were described in the STRING database, the present
PPI results for the 52 proteins showed four major interaction groups (Figure 2b). The
largest group contained 41 genes/proteins; the next was composed of 7 genes/proteins,
while the two smallest groups each contained 2 genes/proteins. In each of the groups,
the interacted genes/proteins were involved in different biological functions, indicating
different functional genes were connected with each other. In Figure 2b, a gene may link
with several different genes as a node/hub. There appeared to be a number of major hubs in

http://www.soybase.org
http://www.soybase.org
https://cn.string-db.org/
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the ATI gene system, which were involved in various biological functions. There were nine
hub genes, including eight yellow hubs and one red hub in the largest group (Figure 2b(i)),
i.e., gATI.15.8 (category III, with 11 links), gATI.6.3 (category III, with 6 links), gATI.7.10
(category I, with 6 links), gATI.13.4 (category VII, with 6 links), gATI.2.15 (category IV, with
5 links), gATI.7.7 (category V, with 5 links), gATI.16.1 (category IV, with 5 links), gATI.4.1
(category VI, with 4 links), gATI.8.1 (category III, with 4 links), etc. Another hub gene was
in the next largest group, i.e., gATI.2.8 (category I, with 4 links) (Figure 2b(ii)). These hub
genes were in the functional categories I, III, IV, V, VI, and VII, showing a broad interaction
among the gene functional categories, especially three hubs with a total of 21 links involved
in category III, indicating more genes linked with the regulation related function (Figure 2b).
The PPI analysis demonstrated that the alkali-tolerance gene system was composed of
interrelated gene networks. Under alkali stress, a great number of genes form complex
regulatory networks, involving energy metabolism, antioxidants, ion transport, signal
transduction, osmotic pressure balance, and others. However, the above ATI gene network
information only involves part of the alkali-tolerant genes identified in this study, the
complete alkali-tolerant gene network diagram needs to be further explored.

The key ATI genes were selected from the 132 identified ATI genes for future stud-
ies according to the following criteria: (i) genes with a large phenotypic contribution
(R2 ≥ 1.00%); (ii) genes having an allele with a positive ATI effect; (iii) genes from the top
ten accessions or top ten predicted crosses; and (iv) genes as a hub with multiple links to
other genes. As a result, a total of 35 genes are summarized in Table 7, in which the genes
that meet all four criteria, even if their allele effect is not high enough, were selected as a
key ATI gene (bold and shaded in Table 7). Thus, the six key candidate genes are involved
in four functional categories in response to alkali stress, including response and signal
transmission genes (category I, gATI.2.8 and gATI.7.10), positive regulation of transcrip-
tion (category III, gATI.6.3), metabolism processes (category IV, gATI.16.1 and gATI.10.7),
and biological process (category VI, gATI.4.1). Among them, gATI.6.3 and gATI.7.10 are
especially important because of their high phenotypic contribution (4.66% and 2.90%) and
the alleles of gATI.2.8.a3, gATI.6.3.a3, and gATI.16.1.a1 have the highest allele effects (0.079,
0.095, and 0.096). In addition to the six key genes, the other five hub genes with 4−11 links
that existed in the top ten accessions and the top ten predicted best crosses were also listed
in boldface in Table 7. They are gATI.15.8 (11 links), gATI.13.4 (6 links), gATI.2.15 (5 links),
gATI.7.7 (5 links), and gATI.8.1 (4 links). In fact, the nominated key genes are also hub
genes; altogether, their broad interaction with other genes made the gene an interrelated
network. All the nominated six key genes, even the 6 + 5 = 11 hub genes with their alleles,
can be used as the starting points to reveal the interrelationship among ATI genes–alleles
as well as the major gene-sources for ATI improvement.

Table 7. The nominated key ATI candidate genes with their alleles at the seedling stage in the
NECSGP.

Gene Code Gene Name R2 Superior
Allele

Allele
Effect

In Accessions
and Parents

No. of
Links

Gene Function and
Classification

gATI.1.1 Glyma01g02580 1.32 gATI.1.1.a2 0.016
√

2
gATI.1.5 Glyma01g36070 1.69 gATI.1.5.a1 0.024

√
1

gATI.2.3 Glyma02g06730 3.48 gATI.2.3.a2 0.027
√

gATI.2.8 Glyma02g11335 1.28 gATI.2.8.a3 * 0.079
√

4 Cell–cell signaling (I)

gATI.2.15 Glyma02g44350 0.24 gATI.2.15.a1 0.043
√

5 Acetyl-CoA metabolic process
(IV)

gATI.3.2 Glyma03g27770 2.23 gATI.3.2.a1 0.023
√

1
gATI.3.3 Glyma03g30270 2.14 gATI.3.3.a1 0.051

√
2

gATI.4.1 Glyma04g10720 2.00 gATI.4.1.a1 * 0.021
√

4 Biological process (VI)
gATI.4.2 Glyma04g43300 2.88 gATI.4.2.a2 0.048

√

gATI.6.2 Glyma06g05300 1.82 gATI.6.2.a3 0.083
√

1
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Table 7. Cont.

Gene Code Gene Name R2 Superior
Allele

Allele
Effect

In Accessions
and Parents

No. of
Links

Gene Function and
Classification

gATI.6.3 Glyma06g07980 4.66 gATI.6.3.a3 0.095
√

6 Positive regulation of
transcription (III)

gATI.7.2 Glyma07g05620 2.45 gATI.7.2.a4 0.053
√

gATI.7.7 Glyma07g14234 0.06 gATI.7.7.a2 * 0.042
√

5 Metabolic process (IV)
gATI.7.8 Glyma07g31130 1.48 gATI.7.8.a2 0.077

√

gATI.7.10 Glyma07g38180 2.90 ATI.7.10.a3 0.028
√

6 Response to wounding (I)

gATI.8.1 Glyma08g04620 0.18 gATI.8.1.a2 0.039
√

4 Protein dephosphorylation
(III)

gATI.8.4 Glyma08g42810 0.05 gATI.8.4.a1 0.017
√

3
gATI.9.3 Glyma09g33220 2.52 gATI.9.3.a3 0.082

√

gATI.10.2 Glyma10g06600 0.80 gATI.10.2.a2 0.023
√

3
gATI.10.3 Glyma10g07601 1.32 gATI.10.3.a1 0.015

√

gATI.10.7 Glyma10g31560 1.32 gATI.10.7.a1 0.018
√

3 Ubiquitin-dependent protein
catabolic process (IV)

gATI.13.4 Glyma13g29225 0.12 gATI.13.4.a1 0.029
√

6 NA (VII)
gATI.13.7 Glyma13g40690 1.03 gATI.13.7.a1 0.012

√

gATI.14.5 Glyma14g37280 2.84 gATI.14.5.a3 0.068 NA
gATI.15.8 Glyma15g32540 (0.03) gATI.15.8.a1 0.005

√
11 Translation (III)

gATI.16.1 Glyma16g08960 1.43 gATI.16.1.a1 0.096
√

5 Fatty acid beta-oxidation (IV)
gATI.17.1 Glyma17g07120 1.66 gATI.17.1.a1 0.033

√
1

gATI.17.7 Glyma17g33930 2.56 gATI.17.7.a2 0.015
√

gATI.17.8 Glyma17g36130 1.46 gATI.17.8.a1 0.061
√

gATI.18.1 Glyma18g01490 2.71 gATI.18.1.a1 0.045
√

gATI.18.9 Glyma18g28130 3.00 gATI.18.9.a2 0.076
√

gATI.18.10 Glyma18g40780 1.71 gATI.18.10.a1 0.108
√

gATI.18.11 Glyma18g46101 2.62 gATI.18.11.a1 0.078
√

gATI.18.14 Glyma18g53285 2.06 gATI.18.14.a3 0.048 NA
gATI.19.1 Glyma19g31900 1.28 gATI.19.1.a2 0.05

√

Note: Gene code: candidate genes with R2 ≥ 1.00% selected from 132 alkali tolerance candidate genes. Superior
alleles: alleles with large effect values (Please See Table S2 for details). In accessions and parents: genes existed
in the best accessions and best predicted optimal crosses. No. of links: the number of links of a node in the PPI
network. The six genes in bold and shaded are the nominated key candidate genes, and the genes in bold are hub
genes. Gene function and classification: I: defense response; II: material transport; III: regulation of related; IV:
metabolic process; V: biosynthetic process; VI: biological process; and VII: unknown function. * the three alleles
were newly emerged or introduced in ERB.

3. Discussion
3.1. Advances in Exploring the Genetic System of Alkali-Tolerance

Regarding the study of the genetic system of alkali-tolerance, early researchers did
not distinguish alkali tolerance from salt tolerance; they called them salt–alkali tolerance
or simply salt tolerance. In this way, Abel [30] identified a tolerance gene NCL and allele
ncl. Shao et al. [31] used underground dilute brine (mainly composed of Na+, Cl−, HCO3−,
CO3

2−, etc.) to analyze the tolerance performance in tolerant × sensitive crosses and
concluded that the tolerance was controlled by a single gene. In fact, this was not salt
tolerance, but tolerance to a mixture of salt and alkali conditions. As indicated in the present
Introduction Section, salt tolerance and alkali tolerance are quite different tolerance traits.

Subsequent researchers tried to analyze the genetic system of alkali tolerance using
marker technology. Tuyen [6] used linkage mapping with 180 mM NaHCO3 as an al-
kali stress induction to identify and locate an alkali tolerance QTL close to Satt447 on
chromosome 13 in two recombinant inbred line (RIL) populations and then used residual
heterozygous lines (RHLs) to narrow down the QTL between Satt447 and GM17-11.6,
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in which four candidate genes were annotated [32]. Zhang [33] used composite interval
mapping (CIM) with 180 mM NaHCO3 to map QTLs of seven alkali-tolerance indicators in
two RIL populations, with the results of 22 and 19 QTLs detected, respectively. Obviously,
these results involve only a few QTLs per trait even though a quantitative inheritance
procedure was used.

For exploring the alkali tolerance in a germplasm population, Zhang et al. [34] used a
genome-wide association study procedure for 257 soybean varieties under 10 mM Na2CO3
stress, in which 16–18 QTLs in a total of 86 QTLs for five indicators were identified.
This result indicates that alkali-tolerance is a quantitatively inherited trait rather than an
oligogenic trait. But the procedure used was not powerful enough because the identified
QTL number and their phenotypic contribution was less than it should be. In contrast, the
present study identified 132 genes with 359 allele effects and a total phenotypic contribution
as high as 90.94% for only a single trait. This indicates that alkali tolerance is a genetically
complex trait, while GASM-RTM-GWAS helped to achieve this understanding.

3.2. The Main Genetic Motivator of Alkali-Tolerance in the NECSGP by Using the
GASM-RTM-GWAS Procedure

In the NECSGP, the major genetic changes in ATI were from ERD to ERB; the ma-
jor ATI-tolerance resources (eight of top ten accessions) were from ERB; and the major
genetic changes that happened in ERB were due to new alleles that emerged or were
introduced (22 negative + 20 positive alleles) rather than alleles that were excluded (only
1 negative + 0 positive alleles). While the increased alleles (11 negative + 16 positive alleles)
in ERA were inherited from ERB, rather than being newly emerged/introduced. This
implies that, for ATI genetic changes from ERD to ERB in the NECSGP, the major genetic
motivator was allele emergence or introduction, followed by recombination among alleles
based on newly increased plus inherited from ERD.

Among the 42 emerged or introduced alleles in ERB, 20 positive ones should be
important to ATI improvement, rather than the 22 negative ones. Table S5 showed the
20 emerged/introduced new alleles on 20 corresponding loci. Their locus contribution
ranged from 0.002 to 2.00, the allele effect ranged from 0.004 to 0.085, 13 new alleles existed
in the top ten accessions and best crosses, and all the alleles were involved in all the func-
tional categories except category I. Among the 20 new alleles, 3 were important alleles, i.e.,
gATI.2.8.a4 (R2 1.28, effect 0.085), gATI.4.1.a2 (R2 2.00, effect 0.042), and gATI.7.7.a2 (R2 0.06,
effect 0.074). These implies that in the evolutionary process, the newly emerged/introduced
alleles happened in almost all the functional processes, and in the NECSGP, the newly
emerged/introduced alleles have accounted for a great contribution to alkali-tolerance
improvement in ERB and ERA.

Direct comparison from the gene–allele matrix revealed that allele inheritance, emer-
gence/introduction, elimination, and recombination are the four basic driving forces of ATI
evolution. This provides an endless source of breeding progress. The direct comparison
procedure in studying the motivator of population evolution was suggested originally by
Fu et al. [35], which is based on the relative thorough identification of the genes/QTLs and
their corresponding alleles in an evolutionary or geographic population. This procedure
has been used effectively by Liu et al. [2] and Su et al. [22].

In the present study, it was achieved by using the GASM-RTM-GWAS procedure [21],
with GASMs as markers such that the 132 ATI genes with their 359 alleles were identified
directly. The GASM-RTM-GWAS procedure features two major innovations [22]. The first
is using multiple allele markers to fit the requirement of multiple alleles in the germplasm
population or breeding population (previously SNPLDB and at present GASM), so it can
detect gene loci as well as their alleles. The second is to minimize the false positives and
false negatives through the following ways: (i) the multilocus model to avoid neighboring
loci interference; (ii) limit of the total phenotypic contributions to less than the heritability
value; (iii) two-stage analysis to reduce noise from excessive markers; (iv) incorporating the
top 10 eigenvectors and their eigenvalues of the marker–haplotype (gene–allele) matrix into
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the linear model as covariates for population structure correction; (v) precise experiment
design to reduce experiment error on a plot-based analysis to keep a precise significance
test; and (vi) a reasonable significance level for the multi-locus model test that is equivalent
to the Bonferroni criterion (0.05/m) in the single locus model [21].

As indicated in the present study, 132 genes with their 359 alleles were identified;
GASM-RTM-GWAS is more powerful and efficient than the other procedures, such as SNP-
MLM-GWAS and SNPLDB-RTM-GWAS [22]. Thus, the GASM-RTM-GWAS procedure fits
especially well with the germplasm populations, with multiple alleles per locus, enabling
an understanding of the complete gene–allele system in population evolutionary study.

3.3. Breeding Strategy for Alkali-Tolerance Improvement in the NECSGP

From GASM-RTM-GWAS, the obtained ATI gene–allele matrix provides a way to
predict the optimal crosses. In the NECSGP, out of the total 64,980 possible predicted
crosses, 5696 (8.77%) could provide offspring lines with an ATI value greater than 0.86; the
best accession in the population with the top ten crosses might be close to 1 or may not be
affected by alkali stress. This indicates a promising potential in the population. This is in
fact the result of genome-wide potential based on whole genome gene–allele identification.
It may be understood as genome-wide cross design or another kind of genomic selection
based on Peleman and van der Voort [25], which is different from Meuwissen et al.’s [36]
genomic selection based on the estimated breeding value for a set of traits from a training
population. As we understand, the former is more applicable to plant breeding because
the breeding procedure usually includes two steps of selection, i.e., selection for optimal
crosses and selection for optimal progenies, with the former step being more important.
This strategy is based on the elite allele of each QTL/gene from the whole genome analysis
of germplasm resources [28] and has been successfully applied in the optimization design
of multiple traits such as days to flowering [35]. As shown in Table 6, the standard deviation
among progenies of each combination was around 20%, indicating that the segregation
among the progenies in a cross was extensive and potential.

In addition, it seems that in the present population, due to the newly emerged/introduced
alleles in ERB, the recombination potential of the NECSGP was much improved. That im-
plies more ATI tolerant materials/gene resources need to be introduced or created/induced
for further ATI improvement. To design new optimal crosses based on the increased
germplasm, additional resequencing for the additional germplasm will be needed. To
save work, a gene chip can be developed and used based on the previous gene–allele
sequence information. This requires the extension of the genetic dissection to the increased
germplasm according to the original whole genome gene–allele information.

4. Materials and Methods
4.1. Plant Materials

A total of 361 accessions, including 243, 80, 20, 13, and 5 accessions collected from
Heilongjiang, Jilin, Liaoning, and Inner Mongolia, respectively, with their maturity group
in MG 000–MG III, were used in the present study (Table S1). According to Fu et al. [35],
these accessions were representative of the four ecoregions in Northeast China, i.e., 61,
230, 8, and 62 from ERA, ERB, ERC, and ERD (Figure S2), respectively, where the original
soybean ecoregion was ERD, then disseminated to ERB and then to ERA and ERC (Table 1,
Figure S2).

4.2. Experimental Design and Evaluation of ATI at the Seedling Stage

In the spring and summer of 2018 and spring of 2020, the 361 accessions were tested
in a greenhouse at the Mudanjiang Branch of the Heilongjiang Academy of Agricultural
Sciences (Mudanjiang, China; 129◦52′′ E, 44◦43′′ N) with the ATIs evaluated in paper rolls in
cups (Figure S3). A randomized block design with 3 replications was used for each season.
In each season, each accession was set such that each treatment and control paralleled each
other as a unit/plot with guarding rows around the whole experiment. For each unit/plot,
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6 well-matured uniform seeds were put in the middle of a filter paper (30 × 20 cm), then
rolled, 1 roll in one plastic cup (5.3 × 7.8 × 11.2 cm) filled with 360 mL 1/2 Hoagland’s
nutrient solution, two cups for one unit/plot, one for treatment, and another for the check.
At the first leaf (V1) stage, 3 healthy plants with uniform growth were selected for further
testing in each cup. The stress treatment started at the V2 stage, with the alkali stress
treatment using a mixed solution based on 1/2 Hoagland’s nutrient solution added with
NaHCO3:Na2CO3 (9:1) into a concentration of 220 mM with pH = 9.8, while another control
cup used 1/2 Hoagland’s nutrient solution only. The fresh solution was changed for both
the stress treatment and the control every 2 days (on the 3rd, 5th, and 7th day) at about
noon time. Then, on the 8th day, the whole plant, including roots, stems, and leaves (some
had wilted already), was harvested and put in a paper bag. The harvests were killed with
conditions of 109 ◦C for 10 min, dried under 80 ◦C to a constant weight, and then weighed.
The ATI was calculated as the ratio of dry treatment weight divided by the dry control
weight. Under alkali stress, all varieties show different degrees of reduced plant height,
shortened internodes, weak and slow growth, and reduced dry weight. However, as the
alkali stress continued to a later stage, the cells lose water, the roots become dry and hard,
the leaves turn yellow, the stem withered, and finally the whole plant died.

4.3. Method of Statistical Analysis

Descriptive statistics, variance analysis, correlation analysis, and chi-square test of
phenotypic data were performed using SAS 9.4 (SAS Institute Inc., Cary, NC, USA). The
statistical model of multienvironment phenotype data is

yijk = µ + αi + β j + (αβ)ij + γk(j) + εijk,

where µ is the population mean, αi is the effect of i-th variety, β j is the effect of the j-th
environment, (αβ)ij is the i-th variety by the j-th environment interaction effect, γk(j)
is the effect of the k-th replication within the j-th environment, and εijk is random er-
ror. The heritability (h2) and genetic variation coefficient (GCV) are calculated from
h2 = σ̂2

g /(σ̂2
g + σ̂2

ge/n +σ̂2
ε /rn ), GCV(%) = σ̂g/µ × 100%, where σ̂2

g , σ̂2
ge, and σ̂2

ε are
the genotype, genotype–environment interaction, and error variance, respectively; n is en-
vironment number, r is experimental repetition number, and µ is the population mean [37].

4.4. Genotyping and Assembly of GASM Markers

RAD sequencing of 361 accessions was conducted at BGI Tech, Shenzhen, China [38].
The genomic DNA from young leaves was extracted according to the conventional CTAB
method [39]. Paired-end sequencing was carried out on the HisSeq 2000 platform with the
multiplex shotgun genotyping method [40]. A total of 1227.23 million paired-end reads with
a length of 100 bp (including a 6 bp index) were generated, and the mean sequencing depth
and coverage rate was 4.21 fold and 3.42%, respectively. All sequence reads were mapped to
a reference genome (Wm82.v.1.1) [41] with SOAP2 [42]. SNP calling was performed using
RealSFS software [43] (http://128.32.118.212/thorfinn/realSFS/, accessed on 12 March
2019) and filtered by a minimum missing and heterozygosity of ≤20% and a minor allele
frequency (MAF) of ≥0.01. SNPs were imputed using fastPHASE software (1.3.0) [44].

All SNPs in a gene were directly assembled into a gene–allele sequence-maker (GASM)
using RTM-GWAS [21], with the highest frequency alleles substitution for alleles varia-
tion of 0.01. Gene assembly was performed according to the gene annotation file (Soy-
Base_Glycine.max_Glyma1.1_gene.txt). When there was an overlap at the gene position,
the gene with a longer length was retained. The assembled genes were used to construct
GASMs in the NECSGP; a total of 6503 GASMs, containing 14,847 alleles, were identified,
the GASMs are distributed on 20 chromosomes (Figure S1).

http://128.32.118.212/thorfinn/realSFS/
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4.5. Identification of the ATI Gene–Allele System Using GASM-RTM-GWAS

Based on the GASMs, the RTM-GWAS procedure was used to identify ATI genes and
their corresponding alleles. In the first stage, a single-locus model association analysis
was conducted to preselect GASMs at p ≤ 0.05. Of the 6503 GASMs, 3246 were prese-
lected. In the second stage, stepwise regression with a G × E model featuring forward
selection and backward elimination using the multilocus model was applied to the prese-
lected 3246 GASM markers to identify genes with their alleles at a model test significance
level p ≤ 0.05 which is equivalent to a Bonferroni criterion of p ≤ 0.05/marker number
(3246 here). At both stages, the top 10 eigenvectors and their eigenvalues were incorporated
into the linear model as covariates for population structure correction [21]. Finally, the
dataset of the estimated allele effects for all the main effect GASMs/genes was organized
into a gene–allele matrix, which was separated into 4 ecoregion submatrices. In addition,
a matrix was established for the top ten tolerant and top ten sensitive accessions. Based
on the matrices, the allele changes, including being inherited, emerged, or introduced,
and excluded alleles were counted for comparisons among the subregions to evaluate the
importance of genetic motivators in the geographic dissemination.

4.6. Recombination Potential Prediction and Optimal Cross Design for ATI in the NECSGP

Based on the ATI gene–allele matrix, all possible 64,980 single crosses among the
361 accessions were generated in silico using both linkage and independent assortment
models using RTM-GWAS [21]. For each cross, the predicted genotypic ATI value was
calculated based on 2000 continuously inbred progenies derived from F2 individuals. The
75th percentile of a cross was used as its predicted cross value. The best 10 crosses were
treated as the ATI optimal crosses of the population.

4.7. Functional Annotation and Interaction of Candidate Genes

Based on the reference genome Wm82.a1.v1 proposed by Schmutz et al. [41], the
identified alkali-tolerant gene system was functionally annotated according to SoyBase
(http://www.soybase.org, accessed on 18 May 2022).

In order to explore the interactions of each gene in the alkaline-tolerance gene system,
the protein sequences of these genes were copied from the Phytozome database (http:
//phytozome.jgi.doe.gov, accessed on 24 May 2022) and then submitted to the “Glycine
max” section of STRING (https://cn.string-db.org/, accessed on 25 May 2022), visualizing
PPI using STRING analysis based on Arabidopsis homologous proteins.

5. Conclusions

The alkali-tolerance index (ATI) at the seedling stage of the NECSGP, composed
of 361 accessions, varied widely from 0.36 to 0.86 with an average of 0.65, but was not
significantly different among averages of the four ecoregions, from 0.64 in ERC to 0.69 in
ERC. In total, 132 ATI genes with their 359 alleles were identified using the innovative
GASM-RTM-GWAS procedure. The major tolerant accessions were found in ERB, due to
both new allele emergence/introduction and old allele exclusion as well as recombination
among the present alleles. The ATI recombination potential was predicted up to 1.0 (without
stress influence) in the population, in which the 10 best crosses with transgression were
recommended for ATI breeding programs. Based on the above results, six key genes with
their best alleles were selected for further functional study.
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