Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = reference torque standard machine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 9665 KB  
Article
Motor Airgap Torque Harmonics Due to Cascaded H-Bridge Inverter Operating with Failed Cells
by Hamid Hamza, Ideal Oscar Libouga, Pascal M. Lingom, Joseph Song-Manguelle and Mamadou Lamine Doumbia
Energies 2025, 18(16), 4286; https://doi.org/10.3390/en18164286 - 12 Aug 2025
Viewed by 483
Abstract
This paper proposes the expressions for the motor airgap torque harmonics induced by a cascaded H-bridge inverter operating with failed cells. These variable frequency drive systems (VFDs), are widely used in oil and gas applications, where a torsional vibration evaluation is a critical [...] Read more.
This paper proposes the expressions for the motor airgap torque harmonics induced by a cascaded H-bridge inverter operating with failed cells. These variable frequency drive systems (VFDs), are widely used in oil and gas applications, where a torsional vibration evaluation is a critical challenge for field engineers. This paper proposes mathematical expressions that are crucial for an accurate torsional analysis during the design stage of VFDs, as required by international standards such as API 617, API 672, etc. By accurately reconstructing the electromagnetic torque from the stator voltages and currents in the (αβ0) reference frame, the obtained expressions enable the precise prediction of the exact locations of torque harmonics induced by the inverter under various real-world operating conditions, without the need for installed torque sensors. The neutral-shifted and peak-reduction fault-tolerant control techniques are commonly adopted under faulty operation of these VFDs. However, their effects on the pulsating torques harmonics in machine air-gap remain uncovered. This paper fulfils this gap by conducting a detailed evaluation of spectral characteristics of these fault-tolerant methods. The theoretical analyses are supported by MATLAB/Simulink 2024 based offline simulation and Typhoon based virtual real-time simulation results performed on a (4.16 kV and 7 MW) vector-controlled induction motor fed by a 7-level cascaded H-bridge inverter. According to the theoretical analyses- and simulation results, the Neutral-shifted and Peak-reduction approaches rebalance the motor input line-to-line voltages in the event of an inverter’s failed cells but, in contrast to the normal mode the carrier, all the triplen harmonics are no longer suppressed in the differential voltage and current spectra due to inequal magnitudes in the phase voltages. These additional current harmonics induce extra airgap torque components that can excite the lowly damped eigenmodes of the mechanical shaft found in the oil and gas applications and shut down the power conversion system due torsional vibrations. Full article
Show Figures

Figure 1

20 pages, 3494 KB  
Article
Estimation of Uncertainty for the Torque Transducer in MNm Range—Classical Approach and Fuzzy Sets
by Janusz D. Fidelus, Jacek Puchalski, Anna Trych-Wildner, Michał K. Urbański and Paula Weidinger
Energies 2023, 16(16), 6064; https://doi.org/10.3390/en16166064 - 18 Aug 2023
Cited by 4 | Viewed by 1729
Abstract
The article provides an analysis of the metrological properties of a 5 MN·m torque transducer. The relative electrical signal (given in electrical units, mV/V) as a function of torque measured in both the clockwise and anticlockwise directions was monitored. To fit the data, [...] Read more.
The article provides an analysis of the metrological properties of a 5 MN·m torque transducer. The relative electrical signal (given in electrical units, mV/V) as a function of torque measured in both the clockwise and anticlockwise directions was monitored. To fit the data, the weighted method of least squares with both a straight-line and a cubic spline curve was used. The results of the analysis indicated that the straight-line fitting method produced smaller values of expanded uncertainty than the cubic spline fitting method. Additionally, the study confirmed the assumptions that the Monte Carlo method for propagating uncorrelated distributions was more accurate than the uncertainty propagation method, regardless of the type of curve fitting used. From the estimated uncertainty coverage corridor at selected measurement points, confidence intervals–expanded uncertainties were determined. Additionally, the fuzzy sets approach to the evaluation of uncertainty was presented, and the approximate value of the expanded uncertainty was calculated. Full article
Show Figures

Graphical abstract

19 pages, 2171 KB  
Article
Effects of the Magnetic Model of Interior Permanent Magnet Machine on MTPA, Flux Weakening and MTPV Evaluation
by Claudio Bianchini, Giorgio Bisceglie, Ambra Torreggiani, Matteo Davoli, Elena Macrelli, Alberto Bellini and Matteo Frigieri
Machines 2023, 11(1), 77; https://doi.org/10.3390/machines11010077 - 8 Jan 2023
Cited by 11 | Viewed by 4984
Abstract
Interior permanent-magnet synchronous machines are widely spreading in automotive and vehicle traction applications, because of their high efficiency over a wide speed range. This capability can be achieved by appropriated control strategies: Maximum Torque per Ampere (MTPA), Flux Weakening (FW) and Maximum Torque [...] Read more.
Interior permanent-magnet synchronous machines are widely spreading in automotive and vehicle traction applications, because of their high efficiency over a wide speed range. This capability can be achieved by appropriated control strategies: Maximum Torque per Ampere (MTPA), Flux Weakening (FW) and Maximum Torque per Volt (MTPV). However, these control trajectories are often based on an simplified magnetic model of the electrical machine. In order to improve the evaluation of machine output capabilities, nonlinear magnetic behavior must be modeled. This is not only related to the final application with a given drive and control structure, but also during the design process of the electric machine. In the design process, the output torque Vs. speed characteristic must be calculated following MTPA, MTPV and FW in the most accurate way to avoid significant error. This paper proposes a set of algorithms to compute MTPA, FW and MTPV curves for interior permanent-magnet synchronous machines taking into account the machines’ nonlinearities caused by iron saturation and compares differed approaches to highlight the torque–speed capabilities for the same machine following different methods. The algorithms are based on the maps of the equivalent inductances of a reference interior permanent-magnet synchronous machine and inductances maps were obtained via 2-D Finite Element Analysis over the machine’s operating points in idiq reference plane. The effects of different 2-D finite element methods are also computed by both standard nonlinear magnetostatic simulations and Frozen Permeability simulations. Results show that the nonlinear model computed via frozen permeability is more accurate than the conventional linear and nonlinear models computed via standard magnetostatic simulations; for this reason, during the electrical machine design, it is important to check the expected performance employing a complete inductance map and frozen permeability. Full article
(This article belongs to the Section Vehicle Engineering)
Show Figures

Figure 1

Back to TopTop