Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = recycled large aggregate self-compacting concrete

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5212 KB  
Article
Compressive Behaviour of Long Steel Tube Columns Filled with Recycled Large Aggregate Self-Compacting Concrete
by Jianchao Wang, Huayu Li and Wei Hou
Buildings 2024, 14(3), 711; https://doi.org/10.3390/buildings14030711 - 7 Mar 2024
Cited by 2 | Viewed by 1438
Abstract
One of the important directions for green development in the world today is to expand the application methods of recycled concrete, improve the utilization rate of waste aggregates, and slow down the consumption of natural resources. The column structure with a large length [...] Read more.
One of the important directions for green development in the world today is to expand the application methods of recycled concrete, improve the utilization rate of waste aggregates, and slow down the consumption of natural resources. The column structure with a large length and slenderness ratio is the most widely used compression unit in practical engineering, which conforms to the principle of sustainable development. In this paper, we study the mechanical properties and failure modes of long columns fabricated from steel tubes filled with recycled large aggregate self-compacting concrete (RLASCC-ST-LC) under compression load. Moreover, we examine the influence of steel tube thickness, recycled large-aggregate particle size, the strength of self-compacting concrete, and the length-to-diameter ratio on the performance of the members through finite element modelling. The results indicated that RLASCC-ST-LCs exhibited different degrees of buckling damage, and the damage processes were basically the same as that of steel tube concrete. When the thickness of steel pipe increased from 4 mm to 5 mm, the ultimate bearing capacity of the component increased by 12.1%; when the strength of self-compacting concrete increased from 30 MPa to 40 MPa and 50 MPa, the ultimate loads of the component increased by 6.96% and 12.4%, respectively. However, the increase in the aspect ratio weakened the bearing capacity of the component, and the ultimate bearing capacities reduced by 4.78% and 10.51% when the aspect ratios were 8, 10, and 12. Finally, based on the existing design codes, the theoretical calculation formulas are proposed for the ultimate bearing capacities of RLASCC-ST-LCs. These findings have significant implications for the widespread application of RLASCC-ST-LCs. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

16 pages, 8101 KB  
Article
Frost Durability of Self-Compacting Concrete Prepared with Aeolian Sand and Recycled Coarse Aggregate
by Hao Yan, Qing Liu, Fengxia Han, Shan Liu, Tong Han and Bowen He
Materials 2023, 16(19), 6393; https://doi.org/10.3390/ma16196393 - 25 Sep 2023
Cited by 6 | Viewed by 1740
Abstract
Aeolian sand (AS) and recycled coarse aggregate (RCA) can be reasonably utilized as green materials for concrete modification. The paucity of natural sand and gravel in the construction industry is anticipated to be remedied by the use of these two eco-friendly concrete ingredients. [...] Read more.
Aeolian sand (AS) and recycled coarse aggregate (RCA) can be reasonably utilized as green materials for concrete modification. The paucity of natural sand and gravel in the construction industry is anticipated to be remedied by the use of these two eco-friendly concrete ingredients. This is incredibly important for environmental protection. Study on the damage law of self-compacting concrete with the addition of AS and RCA (ARSCC) under severely cold conditions is of great significance for the promotion and implementation of this material. In this study, 12 groups of ARSCC specimens were prepared for freeze–thaw cycle experiments, with AS substitution rates of 0, 20%, 40%, and 60% as well as RCA replacement rates of 0, 25%, and 50%. Then, the degradation mechanism of ARSCC freeze–thaw damage was discussed from both macroscopic and microscopic perspectives via mass loss rate (Wn), relative dynamic modulus of elasticity (Pn), bubble spacing factor, and SEM analysis. Finally, the response surface method was utilized to determine the damage variable. A freeze–thaw damage model for ARSCC was developed based on the Weibull distribution and Grey theories. The results showed that the Pn could reflect the evolution law of the internal structure of ARSCC. Appropriate addition of AS to fill the large, harmful pores in RCA would inhibit freeze–thaw damage of ARSCC. The optimum substitution rates of AS and RCA were determined to be 20–40% and 25–50%, respectively. In addition, the values obtained from theoretical damage modeling and experiments were in good agreement. The acquired damage model had the potential to predict ARSCC damage under freeze–thaw cycles. Full article
(This article belongs to the Special Issue Advanced Geomaterials and Reinforced Structures)
Show Figures

Figure 1

17 pages, 3555 KB  
Article
Compressive Behaviors of Thin-Walled Steel Tube Stub Columns Filled with Self-Compacting Concrete Containing Recycled Aggregate
by Yunyang Wang, Shengwei Sun, Liqing Zhang and Yandong Jia
Materials 2023, 16(18), 6088; https://doi.org/10.3390/ma16186088 - 6 Sep 2023
Cited by 2 | Viewed by 1473
Abstract
Natural resources have been excessively consumed, and large amounts of construction wastes have been generated, owing to the fast development of civil industry, causing crucial environmental issues. Therefore, reusable construction waste fabricated into recycled concrete offers a good strategy to solve this issue. [...] Read more.
Natural resources have been excessively consumed, and large amounts of construction wastes have been generated, owing to the fast development of civil industry, causing crucial environmental issues. Therefore, reusable construction waste fabricated into recycled concrete offers a good strategy to solve this issue. Thus, this article first develops thin-walled steel tubes stub columns filled with self-compacting concrete containing recycled coarse aggregate. Afterwards, the compressive behaviors of the columns when undergoing axial compression loading to failure are explored. Subsequently, the effect of types of self-compacting concrete and wall thickness on failure modes and the relationships between load and displacement/strain is discussed comprehensively. Moreover, models of load–displacement/strain behaviors are proposed. The results show that columns with identical wall thicknesses containing both natural and recycled coarse aggregate display similar failure modes, mainly presenting as local buckling and rupture. The shape of the load–displacement/strain curves for identical wall thicknesses are almost the same. Nevertheless, the maximum load and stiffness of columns containing recycled coarse aggregate are lower than those of columns containing natural coarse aggregate. Additionally, the maximum loads corresponding to wall thickness of 1.2 mm and 3.0 mm are decreased by 18.4% and 5.8%, respectively. Moreover, the proposed models can reasonably evaluate the relationships between load and displacement/strain. This paper demonstrates that thin-walled steel tubular columns containing recycled coarse aggregate present positive compressive behaviors and thus exhibit great potential for developing environmentally friendly and sustainable civil infrastructures. Full article
(This article belongs to the Topic Materials for Carbon-Neutral Infrastructures)
Show Figures

Figure 1

20 pages, 2696 KB  
Article
Mechanical and Durability Properties of CCD-Optimised Fibre-Reinforced Self-Compacting Concrete
by Gunachandrabose Sivanandam and Sreevidya Venkataraman
Processes 2023, 11(2), 455; https://doi.org/10.3390/pr11020455 - 2 Feb 2023
Cited by 5 | Viewed by 2195
Abstract
The accelerated advancement of industrialization, urbanization, and technology produces an enormous amount of waste materials that are channelled into the environment, contaminating the soil, water and air. This exceedingly large volume of waste in the planet’s environment has made it challenging and difficult [...] Read more.
The accelerated advancement of industrialization, urbanization, and technology produces an enormous amount of waste materials that are channelled into the environment, contaminating the soil, water and air. This exceedingly large volume of waste in the planet’s environment has made it challenging and difficult to handle; thus, it is urgent to facilitate alternative methods of waste disposal. Moreover, the consumption of concrete raw materials increases as a consequence of a sudden increase in concrete usage. In this study, printed circuit boards (PCB), cutting waste (e-waste) (0%, 5%, 10%, 15%, 20%) and recycled concrete aggregate (construction and demolition waste) (0%, 20%, 40%, 60%, 80%, 100%) replace the fine and coarse aggregate; this is utilised in the making of self-compacting concrete (SCC). To mitigate the impact of shrinkage and micro-cracks produced during loading, synthetic fibres (polypropylene fibres) (0%, 0.25%, 0.5%, 0.75%, 1%) are incorporated into the dense matrix of concrete. Based on the experiments conducted, it is concluded that the optimum percentages of e-waste, recycled aggregate and synthetic fibres are 10%, 60% and 0.5%, respectively. It is proposed to use response surface methodology for the statistical modelling of fibre-reinforced self-compacting concrete (FRSCC) ingredients, which will diminish the number of experiments conducted during optimisation. Experimental optimisation of ingredients was carried out by determining the workability properties (slump flow, L-Box, V-Funnel and Sieve test), strength properties (compressive, split tensile, flexural at 7, 14, 28 days of curing) and durability properties against chemical exposure (sulphuric and hydrochloric acid attack, sulphate attack at 29 and 90 days of immersion). In the statistical optimisation process, the central composite design (CCD) is utilised, and it is concluded that the optimum percentages of e-waste, recycled aggregate and synthetic fibres are 9.90%, 51.35% and 0.503%, respectively, as these produce a compressive strength (CS) of 47.02 MPa at the end of the 28th day of curing, whereas FRSCC created with experimentally optimised ingredients shows a strength of 46.79 MPa with the use of 60% of recycled aggregate, 10% of e-waste and 0.5% polypropylene fibre. Hence, it is observed that the CCD-optimised ingredients were the optimum dosage of ingredients based on the compressive strength values at 28 days. It is concluded that the FRSCC specimens created with CCD-optimised parameters show better resistance against loading and chemical exposure, as these show minimum weight and strength loss when compared to FRSCC with experimentally optimised parameters. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

24 pages, 4085 KB  
Article
Statistical Approach for the Design of Structural Self-Compacting Concrete with Fine Recycled Concrete Aggregate
by Víctor Revilla-Cuesta, Marta Skaf, Ana B. Espinosa, Amaia Santamaría and Vanesa Ortega-López
Mathematics 2020, 8(12), 2190; https://doi.org/10.3390/math8122190 - 9 Dec 2020
Cited by 35 | Viewed by 3403
Abstract
The compressive strength of recycled concrete is acknowledged to be largely conditioned by the incorporation ratio of Recycled Concrete Aggregate (RCA), although that ratio needs to be carefully assessed to optimize the design of structural applications. In this study, Self-Compacting Concrete (SCC) mixes [...] Read more.
The compressive strength of recycled concrete is acknowledged to be largely conditioned by the incorporation ratio of Recycled Concrete Aggregate (RCA), although that ratio needs to be carefully assessed to optimize the design of structural applications. In this study, Self-Compacting Concrete (SCC) mixes containing 100% coarse RCA and variable amounts, between 0% and 100%, of fine RCA were manufactured and their compressive strengths were tested in the laboratory for a statistical analysis of their strength variations, which exhibited robustness and normality according to the common statistical procedures. The results of the confidence intervals, the one-factor ANalysis Of VAriance (ANOVA), and the Kruskal–Wallis test showed that an increase in fine RCA content did not necessarily result in a significant decrease in strength, although the addition of fine RCA delayed the development of the final strength. The statistical models presented in this research can be used to define the optimum incorporation ratio that would produce the highest compressive strength. Furthermore, the multiple regression models offered accurate estimations of compressive strength, considering the interaction between the incorporation ratio of fine RCA and the curing age of concrete that the two-factor ANOVA revealed. Lastly, the probability distribution predictions, obtained through a log-likelihood analysis, fitted the results better than the predictions based on current standards, which clearly underestimated the compressive strength of SCC manufactured with fine RCA and require adjustment to take full advantage of these recycled materials. This analysis could be carried out on any type of waste and concrete, which would allow one to evaluate the same aspects as in this research and ensure that the use of recycled concrete maximizes both sustainability and strength. Full article
(This article belongs to the Special Issue Mathematical Problems in Materials Science)
Show Figures

Graphical abstract

Back to TopTop