Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (71)

Search Parameters:
Keywords = reactor cavity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 6966 KiB  
Article
Surface Subsidence Response to Safety Pillar Width Between Reactor Cavities in the Underground Gasification of Thin Coal Seams
by Ivan Sakhno, Svitlana Sakhno and Oleksandr Vovna
Sustainability 2025, 17(6), 2533; https://doi.org/10.3390/su17062533 - 13 Mar 2025
Cited by 3 | Viewed by 750
Abstract
Underground coal gasification (UCG) is a clean and automated coal technological process that has great potential. Environmental hazards such as the risk of ground surface subsidence, flooding, and water pollution are among the problems that restrict the application of UCG. Overburden rock stability [...] Read more.
Underground coal gasification (UCG) is a clean and automated coal technological process that has great potential. Environmental hazards such as the risk of ground surface subsidence, flooding, and water pollution are among the problems that restrict the application of UCG. Overburden rock stability above UCG cavities plays a key role in the prevention of the mentioned environmental hazards. It is necessary to optimize the safety pillar width to maintain rock stability and ensure minimal coal losses. This study focused on the investigation of the influence of pillar parameters on surface subsidence, taking into account the non-rectangular shape of the pillar and the presence of voids above the UCG reactor in the immediate roof. The main research was carried out using the finite element method in ANSYS 17.2 software. The results of the first simulation stage demonstrated that during underground gasification of a thin coal seam using the Controlled Retraction Injection Points method, with reactor cavities measuring 30 m in length and pillars ranging from 3.75 to 15 m in width, the surface subsidence and rock movement above gasification cavities remain within the pre-peak limits, provided the safety pillar’s bearing capacity is maintained. The probability of crack initiation in the rock mass and subsequent environmental hazards is low. However, in the case of the safety pillars’ destruction, there is a high risk of crack evolution in the overburden rock. In the case of crack formation above the gasification panel, the destruction of aquiferous sandstones and water breakthroughs into the gasification cavities become possible. The surface infrastructure is therefore at risk of destruction. The assessment of the pillars’ stability was carried out at the second stage using numerical simulation. The study of the stress–strain state and temperature distribution in the surrounding rocks near a UCG reactor shows that the size of the heat-affected zone of the UCG reactor is less than the thickness of the coal seam. This shows that there is no significant direct influence of the gasification process on the stability of the surrounding rocks around previously excavated cavities. The coal seam failure in the side walls of the UCG reactor, which occurs during gasification, leads to a reduction in the useful width of the safety pillar. The algorithm applied in this study enables the optimization of pillar width under any mining and geological conditions. This makes it possible to increase the safety and reliability of the UCG process. For the conditions of this research, the failure of coal at the stage of gasification led to a decrease in the useful width of the safety pillar by 0.5 m. The optimal width of the pillar was 15 m. Full article
Show Figures

Figure 1

20 pages, 3339 KiB  
Article
Experimental Dielectric Properties and Temperature Measurement Analysis to Assess the Thermal Distribution of a Multimode Microwave-Assisted Susceptor Fixed-Bed Reactor
by Alejandro Fresneda-Cruz, Gonzalo Murillo-Ciordia and Ignacio Julian
Processes 2025, 13(3), 774; https://doi.org/10.3390/pr13030774 - 7 Mar 2025
Viewed by 753
Abstract
In this study, the integration of microwave-assisted technology into fixed-bed configuration processes is explored aiming to characterize and address its challenges with a customized multimodal microwave cavity. This research focuses on evaluating the uncertainty in contactless temperature measurement methods as spectral thermographic cameras [...] Read more.
In this study, the integration of microwave-assisted technology into fixed-bed configuration processes is explored aiming to characterize and address its challenges with a customized multimodal microwave cavity. This research focuses on evaluating the uncertainty in contactless temperature measurement methods as spectral thermographic cameras and infrared pyrometers, microwave heating performance, and the thermal homogeneity within fixed beds containing microwave–susceptor materials, including the temperature-dependent dielectric characterization of such materials, having different geometry and size (from 120 to 5000 microns). The thermal inhomogeneities along different bed configurations were quantified, assessing the most appropriate fixed-bed arrangement and size limitation at the employed irradiation frequency (2.45 GHz) to tackle microwave-assisted gas–solid chemical conversions. An increased temperature heterogeneity along the axial profile was found for finer susceptor particles, while the higher microwave susceptibility of coarser grades led to increased temperature gradients, ΔT > 300 °C. Moreover, results evidenced that the temperature measurement on the fixed-bed quartz reactor surface by a punctual infrared pyrometer entails a major error regarding the real temperature on the microwave susceptor surface within the tubular quartz reactor (up to 230% deviation). The experimental findings pave the way to assess the characteristics that microwave susceptors and fixed beds must perform to minimize thermal inhomogeneities and optimize the microwave-assisted coupling with solid–gas-phase reactor design and process upscaling using such multimode cavities. Full article
(This article belongs to the Special Issue Heat and Mass Transfer Phenomena in Energy Systems)
Show Figures

Figure 1

22 pages, 25521 KiB  
Article
Contributon-Informed Approach to RPV Irradiation Study Using Hybrid Shielding Methodology
by Mario Matijević, Krešimir Trontl and Dubravko Pevec
Energies 2024, 17(23), 6174; https://doi.org/10.3390/en17236174 - 7 Dec 2024
Viewed by 979
Abstract
An important aspect of pressurized water reactor (PWR) lifetime monitoring is supporting radiation shielding analyses which can quantify various in-core and out-core effects induced in reactor materials by varying neutron–gamma fields. A good understanding of such a radiation environment during normal and accidental [...] Read more.
An important aspect of pressurized water reactor (PWR) lifetime monitoring is supporting radiation shielding analyses which can quantify various in-core and out-core effects induced in reactor materials by varying neutron–gamma fields. A good understanding of such a radiation environment during normal and accidental operating conditions is required by plant regulators to ensure proper shielding of equipment and working personnel. The complex design of a typical PWR is posing a deep penetration shielding problem for which an elaborate simulation model is needed, not only in geometrical aspects but also in efficient computational algorithms for solving particle transport. This paper presents such a hybrid shielding approach of FW-CADIS for characterization of the reactor pressure vessel (RPV) irradiation using SCALE6.2.4 code package. A fairly detailed Monte Carlo model (MC) of typical reactor internals was developed to capture all important streaming paths of fast neutrons which will backscatter the biological shield and thus enhance RPV irradiation through the cavity region. Several spatial differencing and angular segmentation options of the discrete ordinates SN flux solution were compared in connection to a SN mesh size and were inspected by VisIt code. To optimize MC neutron transport toward the upper RPV head, which is a particularly problematic region for particle transport, a deterministic solution of discrete ordinates in forward/adjoint mode was convoluted in a so-called contributon flux, which proved to be useful for subsequent SN mesh refinement and variance reduction (VR) parameters preparation. The pseudo-particle flux of contributons comes from spatial channel theory which can locate spatial regions important for contributing to a shielding response. Full article
(This article belongs to the Section B4: Nuclear Energy)
Show Figures

Figure 1

18 pages, 4878 KiB  
Article
Intracore Natural Circulation Study in the High Temperature Test Facility
by Izabela Gutowska, Robert Kile, Brian G. Woods and Nicholas R. Brown
J. Nucl. Eng. 2024, 5(4), 500-517; https://doi.org/10.3390/jne5040031 - 14 Nov 2024
Viewed by 1233
Abstract
The development of the Modular High-Temperature Gas-Cooled Reactor is a significant milestone in advanced nuclear reactor technology. One of the concerns for the reactor’s safe operation is the effects of a loss-of-flow accident (LOFA) where the coolant circulators are tripped, and forced coolant [...] Read more.
The development of the Modular High-Temperature Gas-Cooled Reactor is a significant milestone in advanced nuclear reactor technology. One of the concerns for the reactor’s safe operation is the effects of a loss-of-flow accident (LOFA) where the coolant circulators are tripped, and forced coolant flow through the core is lost. Depending on the steam generator placement, loop or intracore natural circulation develops to help transfer heat from the core to the reactor cavity, cooling system. This paper investigates the fundamental physical phenomena associated with intracore coolant natural circulation flow in a one-sixth Computational Fluid Dynamics (CFD) model of the Oregon State University High Temperature Test Facility (OSU HTTF) following a loss-of-flow accident transient. This study employs conjugate heat transfer and steady-state flow along with an SST k-ω turbulence model to characterize the phenomenon of core channel-to-channel natural convection. Previous studies have revealed the importance of complex flow distribution in the inlet and outlet plenums with the potential to generate hot coolant jets. For this reason, complete upper and lower plenum volumes are included in the analyzed computational domain. CFD results also include parametric studies performed for a mesh sensitivity analysis, generated using the STAR-CCM+ software. The resulting channel axial velocities and flow directions support the test facility scaling analysis and similarity group distortions calculation. Full article
Show Figures

Figure 1

17 pages, 7376 KiB  
Article
Numerical Simulation and Experimental Analysis for Microwave Sintering Process of Lithium Hydride (LiH)
by Yuanjia Lu, Maobing Shuai, Jiyun Gao, Xiaolei Ye, Shenghui Guo, Li Yang, Bin Huang, Jiajia Zhang, Ming Hou, Lei Gao and Ziqi Zhou
Materials 2024, 17(21), 5342; https://doi.org/10.3390/ma17215342 - 31 Oct 2024
Cited by 1 | Viewed by 1009
Abstract
Dense lithium hydride (LiH) is widely used in neutron shielding applications for thermonuclear reactors and space systems due to its unique properties. However, traditional sintering methods often lead to cracking in LiH products. This study investigates the densification sintering of LiH using microwave [...] Read more.
Dense lithium hydride (LiH) is widely used in neutron shielding applications for thermonuclear reactors and space systems due to its unique properties. However, traditional sintering methods often lead to cracking in LiH products. This study investigates the densification sintering of LiH using microwave technology. A multiphysics model was established based on the measured dielectric properties of LiH at different temperatures, allowing for a detailed analysis of the electromagnetic and thermal field distributions during the microwave heating of cylindrical LiH samples. The results indicate that the electric field distribution within the LiH is relatively uniform, with resistive losses concentrated primarily in the LiH region of the microwave cavity. LiH rapidly absorbs microwave energy, reaching the sintering temperature of 520 °C in just 415 s. Additionally, the temperature difference between the low- and high-temperature regions during the sintering process remains below 5 °C, demonstrating excellent uniform heating characteristics. The microwave sintering process enhances interface migration within the LiH samples, resulting in dense metallurgical bonding between grains. In summary, this research provides valuable insights and theoretical support for the rapid densification of LiH materials, highlighting the potential of microwave technology in improving material properties. Full article
Show Figures

Figure 1

20 pages, 20653 KiB  
Article
Cost-Effective Thermomechanical Processing of Nanostructured Ferritic Alloys: Microstructure and Mechanical Properties Investigation
by Yan-Ru Lin, Yajie Zhao, Yi-Feng Su and Thak Sang Byun
Materials 2024, 17(19), 4763; https://doi.org/10.3390/ma17194763 - 28 Sep 2024
Viewed by 1097
Abstract
Nanostructured ferritic alloys (NFAs), such as oxide-dispersion strengthened (ODS) alloys, play a vital role in advanced fission and fusion reactors, offering superior properties when incorporating nanoparticles under irradiation. Despite their importance, the high cost of mass-producing NFAs through mechanical milling presents a challenge. [...] Read more.
Nanostructured ferritic alloys (NFAs), such as oxide-dispersion strengthened (ODS) alloys, play a vital role in advanced fission and fusion reactors, offering superior properties when incorporating nanoparticles under irradiation. Despite their importance, the high cost of mass-producing NFAs through mechanical milling presents a challenge. This study delves into the microstructure-mechanical property correlations of three NFAs produced using a novel, cost-effective approach combining severe plastic deformation (SPD) with the continuous thermomechanical processing (CTMP) method. Analysis using scanning electron microscopy (SEM)-electron backscatter diffraction (EBSD) revealed nano-grain structures and phases, while scanning transmission electron microscopy (STEM)-energy dispersive X-ray spectroscopy (EDS) quantified the size and density of Ti-N, Y-O, and Cr-O fine particles. Atom probe tomography (APT) further confirmed the absence of finer Y-O particles and characterized the chemical composition of the particles, suggesting possible nitride dispersion strengthening. Correlation of microstructure and mechanical testing results revealed that CTMP alloys, despite having lower nanoparticle densities, exhibit strength and ductility comparable to mechanically milled ODS alloys, likely due to their fine grain structure. However, higher nanoparticle densities may be necessary to prevent cavity swelling under high-temperature irradiation and helium gas production. Further enhancements in uniform nanoparticle distribution and increased sink strength are recommended to mitigate cavity swelling, advancing their suitability for nuclear applications. Full article
(This article belongs to the Special Issue Mechanical Behavior and Radiation Response of Materials)
Show Figures

Figure 1

14 pages, 30297 KiB  
Article
Production of Spheroidized Micropowders of W-Ni-Fe Pseudo-Alloy Using Plasma Technology
by Andrey Samokhin, Nikolay Alekseev, Aleksey Dorofeev, Andrey Fadeev and Mikhail Sinaiskiy
Metals 2024, 14(9), 1043; https://doi.org/10.3390/met14091043 - 13 Sep 2024
Cited by 1 | Viewed by 1032
Abstract
The process of obtaining powders from the 5–50 μm fraction of a W-Ni-Fe system consisting of particles with predominantly spherical shapes was investigated. Experimental studies on the plasma–chemical synthesis of a nanopowder composed of WNiFe-90 were carried out in a plasma reactor with [...] Read more.
The process of obtaining powders from the 5–50 μm fraction of a W-Ni-Fe system consisting of particles with predominantly spherical shapes was investigated. Experimental studies on the plasma–chemical synthesis of a nanopowder composed of WNiFe-90 were carried out in a plasma reactor with a confined jet flow. A mixture of tungsten trioxide, nickel oxide, and iron oxide powders interacted with a flow of hydrogen-containing plasma generated in an electric-arc plasma torch. The parameters of the spray-drying process and the composition of a suspension consisting of WNiFe-90 nanoparticles were determined, which provided mechanically strong nanopowder microgranules with a rounded shape and a homogeneous internal structure that contained no cavities. The yield of the granule fraction under 50 μm was 60%. The influence of the process parameters of the plasma treatment of the nanopowder microgranules in the thermal plasma flow on the degree of spheroidization and the microstructure of the obtained particles, seen as their bulk density and fluidity, was established. It was shown that the plasma spheroidization of the microgranules of the W-Ni-Fe system promoted the formation of a submicron internal structure in the obtained spherical particles, which were characterized by an average tungsten grain size of 0.7 μm. Full article
Show Figures

Figure 1

26 pages, 12128 KiB  
Article
Compact Microwave Continuous-Flow Heater
by Jueliang Wu, Yuehao Ma, Shumeng Yin, Changbao Yin, Ke Yin, Yang Yang and Huacheng Zhu
Processes 2024, 12(9), 1895; https://doi.org/10.3390/pr12091895 - 4 Sep 2024
Cited by 2 | Viewed by 1237
Abstract
Microwave continuous-flow heating has been proven to reduce the time of chemical reaction, increase the conversion rate, and improve product purity effectively. However, there are still problems such as relatively low heating efficiency, unideal heating homogeneity, and poor compactness, which brings further drawbacks [...] Read more.
Microwave continuous-flow heating has been proven to reduce the time of chemical reaction, increase the conversion rate, and improve product purity effectively. However, there are still problems such as relatively low heating efficiency, unideal heating homogeneity, and poor compactness, which brings further drawbacks like difficulty in fabrication and integration. In this study, a compact microwave continuous-flow heater based on six fractal antennas is proposed to address the problems above. First, a multi-physics simulation model is built, while heating efficiency and the volumetric coefficient of variance (COV) are improved through adjusting the geometric structure of this heater and the phase assignment of each radiator. Second, an experiment is conducted to verify the simulation model, which is consistent with the simulation. Third, a method of fast varying phases to achieve greater heating efficiency and heating homogeneity is adopted. The results show that the single-phase radiator improved efficiency by 31.1%, and COV was significantly optimized, reaching 64%. Furthermore, 0–100% ethanol–water solutions are processed by the heater, demonstrating its strong adaptability of vastly changing relative permittivity of liquid load. Moreover, an advance of this microwave continuous-flow heater is observed, compared with conventional multi-mode resonant cavity. Last, the performance of this microwave continuous-flow heater as the chemical reactor for biodiesel production is simulated. This design enables massive chemical production in fields like food industry and biodiesel production, with enhanced compactness, heating efficiency, and heating homogeneity. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

15 pages, 1057 KiB  
Article
Use of Non-Thermal Plasma as Postoperative Therapy in Anal Fistula: Clinical Experience and Results
by Régulo López-Callejas, Pasquinely Salvador Velasco-García, Mario Betancourt-Ángeles, Benjamín Gonzalo Rodríguez-Méndez, Guillermo Berrones-Stringel, César Jaramillo-Martínez, Fernando Eliseo Farías-López, Antonio Mercado-Cabrera and Raúl Valencia-Alvarado
Biomedicines 2024, 12(8), 1866; https://doi.org/10.3390/biomedicines12081866 - 15 Aug 2024
Cited by 1 | Viewed by 1768
Abstract
Anal fistula, characterized by abnormal tracts between the perianal skin and the anal canal, presents challenges in treatment because of its diversity and complexity. This study investigates the use of non-thermal plasma as a postsurgical therapy for anal fistula, aiming to promote healing [...] Read more.
Anal fistula, characterized by abnormal tracts between the perianal skin and the anal canal, presents challenges in treatment because of its diversity and complexity. This study investigates the use of non-thermal plasma as a postsurgical therapy for anal fistula, aiming to promote healing and tissue regeneration. A specialized plasma reactor was designed to apply non-thermal plasma within the anorectal cavity practically. Non-thermal plasma treatment was administered to 20 patients including 10 undergoing fistulectomies and 10 undergoing fistulotomies. The average duration of non-thermal plasma application in the operating room was shorter for fistulotomies. The pain reported the day after surgery was similar in both groups. Improvements in the number of evacuations starting from the day after surgery, as well as the assessment of stool quality using the Bristol scale, indicated satisfactory intestinal recovery. Fistulotomy patients exhibited faster wound healing times. These findings underscore the efficacy of non-thermal plasma as a postoperative therapy for anal fistula, enhancing healing and recovery outcomes without increasing complication risks. Full article
(This article belongs to the Special Issue Skin Tissue Regeneration and Wound Healing)
Show Figures

Figure 1

12 pages, 5507 KiB  
Article
Magnetic Hardening of Heavily Helium-Ion-Irradiated Iron–Chromium Alloys
by Yasuhiro Kamada, Daiki Umeyama, Takeshi Murakami, Kazuyuki Shimizu and Hideo Watanabe
Metals 2024, 14(5), 568; https://doi.org/10.3390/met14050568 - 12 May 2024
Viewed by 1922
Abstract
This study reports on the magnetic hardening phenomenon of heavily helium ion-irradiated iron–chromium alloys. The alloys are important structural materials in next-generation nuclear reactors. In some cases, problems may arise when the magnetic properties of the materials change due to neutron irradiation. Therefore, [...] Read more.
This study reports on the magnetic hardening phenomenon of heavily helium ion-irradiated iron–chromium alloys. The alloys are important structural materials in next-generation nuclear reactors. In some cases, problems may arise when the magnetic properties of the materials change due to neutron irradiation. Therefore, it is necessary to understand the effects of irradiation on magnetism. Helium irradiation was conducted as a simulated irradiation, and the effect of cavity formation on magnetic properties was thoroughly investigated. High-quality single-crystal Fe-x%Cr (x = 0, 10, 20) films, with a thickness of 180–200 nm, were fabricated through ultra-high vacuum evaporation. Subsequently, irradiation of 19 dpa with 30 keV He+ ions was conducted at room temperature. X-ray diffraction measurements and electron microscopy observations confirmed significant lattice expansion and the formation of high-density cavities after irradiation. The magnetization curve of pure iron remained unchanged, while magnetic hardening was noticed in iron–chromium alloys. This phenomenon is believed to be due to the combined effect of cavity formation and changes in the atomic arrangement of chromium. Full article
Show Figures

Graphical abstract

18 pages, 5928 KiB  
Article
Enhanced Efficiency of MHD-Driven Double-Diffusive Natural Convection in Ternary Hybrid Nanofluid-Filled Quadrantal Enclosure: A Numerical Study
by Saleh Mousa Alzahrani and Talal Ali Alzahrani
Mathematics 2024, 12(10), 1423; https://doi.org/10.3390/math12101423 - 7 May 2024
Cited by 6 | Viewed by 1317
Abstract
The study investigates the performance of fluid flow, thermal, and mass transport within a cavity, highlighting its application in various engineering sectors like nuclear reactors and solar collectors. Currently, the focus is on enhancing heat and mass transfer through the use of ternary [...] Read more.
The study investigates the performance of fluid flow, thermal, and mass transport within a cavity, highlighting its application in various engineering sectors like nuclear reactors and solar collectors. Currently, the focus is on enhancing heat and mass transfer through the use of ternary hybrid nanofluid. Motivated by this, our research delves into the efficiency of double-diffusive natural convective (DDNC) flow, heat, and mass transfer of a ternary hybrid nanosuspension (a mixture of Cu-CuO-Al2O3 in water) in a quadrantal enclosure. The enclosure’s lower wall is set to high temperatures and concentrations (Th and Ch), while the vertical wall is kept at lower levels (Tc and Cc). The curved wall is thermally insulated, with no temperature or concentration gradients. We utilize the finite element method, a distinguished numerical approach, to solve the dimensionless partial differential equations governing the system. Our analysis examines the effects of nanoparticle volume fraction, Rayleigh number, Hartmann number, and Lewis number on flow and thermal patterns, assessed through Nusselt and Sherwood numbers using streamlines, isotherms, isoconcentration, and other appropriate representations. The results show that ternary hybrid nanofluid outperforms both nanofluid and hybrid nanofluid, exhibiting a more substantial enhancement in heat transfer efficiency with increasing volume concentration of nanoparticles. Full article
Show Figures

Figure 1

13 pages, 4196 KiB  
Article
Cavity Swelling of 15-15Ti Steel at High Doses by Ion Irradiation
by Cong Liu, Hailiang Ma, Ping Fan, Ke Li, Qiaoli Zhang, Aibing Du, Wei Feng, Xiping Su, Shengyun Zhu and Daqing Yuan
Materials 2024, 17(4), 925; https://doi.org/10.3390/ma17040925 - 17 Feb 2024
Cited by 3 | Viewed by 1515
Abstract
The titanium-stabilized austenitic stainless steel Fe-15Cr-15Ni, which shows enhanced resistance to irradiation swelling compared with more traditional 316Ti, has been selected as a core material for fast reactors. Data on the evolution of irradiation swelling in 15-15Ti steels at very high doses, which [...] Read more.
The titanium-stabilized austenitic stainless steel Fe-15Cr-15Ni, which shows enhanced resistance to irradiation swelling compared with more traditional 316Ti, has been selected as a core material for fast reactors. Data on the evolution of irradiation swelling in 15-15Ti steels at very high doses, which cannot be easily achieved by neutron irradiation, are still lacking. In this paper, the swelling behavior of the titanium-modified austenitic stainless steel 15-15Ti was investigated by pre-implantation of He at room temperature followed by Ni-ion irradiation at 580 °C to peak doses of 120, 240 and 400 dpa. Relatively small cavities were observed in the zone of helium implantation, while large cavities appeared in the region near the damage peak. A correction formula for the dpa curve was proposed and applied to samples with large swelling. It was found that the steady-state swelling rate of 15-15Ti remains at ~1%/dpa even at high doses. By comparing the swelling data of the helium-implanted and helium-free regions at same doses, 70 dpa and 122 dpa, the suppression of swelling by excessive helium can be deduced at such doses. Full article
(This article belongs to the Special Issue Research on the Microstructure and Properties of Metal Alloys)
Show Figures

Figure 1

10 pages, 2792 KiB  
Article
Microstructure and Magnetism of Heavily Helium-Ion Irradiated Epitaxial Iron Films
by Yasuhiro Kamada, Daiki Umeyama, Tomoki Oyake, Takeshi Murakami, Kazuyuki Shimizu, Satomi Fujisaki, Noriyuki Yoshimoto, Kazuhito Ohsawa and Hideo Watanabe
Metals 2023, 13(11), 1905; https://doi.org/10.3390/met13111905 - 18 Nov 2023
Cited by 1 | Viewed by 2538
Abstract
This study reports on the microstructure and magnetism of pure iron irradiated with high doses of helium ions. Iron alloys are important structural materials used as components in fusion reactors, and a comprehensive database of their various properties has been developed. But little [...] Read more.
This study reports on the microstructure and magnetism of pure iron irradiated with high doses of helium ions. Iron alloys are important structural materials used as components in fusion reactors, and a comprehensive database of their various properties has been developed. But little has been investigated on magnetic properties, in particular, the effects of high doses and helium cavities are lacking. Single-crystal iron films, with a thickness of 200 nm, were prepared using the ultra-high vacuum evaporation method. These films were then irradiated with 30 keV He+ ions at room temperature up to a dose of 18 dpa. X-ray diffraction measurements and cross-sectional transmission electron microscope observations revealed significant microstructural changes, including a large lattice expansion perpendicular to the film plane and the formation of high-density cavities after irradiation. However, the saturation magnetization and the shape of the magnetization curve showed almost no change, indicating the robustness of the magnetic properties of iron. Full article
Show Figures

Figure 1

19 pages, 7204 KiB  
Article
Innovative Curved-Tip Reactor for Non-Thermal Plasma and Plasma-Treated Water Generation: Synergistic Impact Comparison with Sodium Hypochlorite in Dental Root Canal Disinfection
by Raúl Arguello-Sánchez, Régulo López-Callejas, Benjamín Gonzalo Rodríguez-Méndez, Rogelio Scougall-Vilchis, Ulises Velázquez-Enríquez, Antonio Mercado-Cabrera, Rosendo Peña-Eguiluz, Raúl Valencia-Alvarado and Carlo Eduardo Medina-Solís
Materials 2023, 16(22), 7204; https://doi.org/10.3390/ma16227204 - 17 Nov 2023
Cited by 4 | Viewed by 1972
Abstract
Non-thermal plasmas (NTPs), known as cold atmospheric plasmas (CAPs), hold great potential for diverse medical applications, including dentistry. However, traditional linear and rigid dielectric barrier discharge reactors used for NTP generation encounter limitations in accessing oral cavities and root canals. To address this [...] Read more.
Non-thermal plasmas (NTPs), known as cold atmospheric plasmas (CAPs), hold great potential for diverse medical applications, including dentistry. However, traditional linear and rigid dielectric barrier discharge reactors used for NTP generation encounter limitations in accessing oral cavities and root canals. To address this issue, we have developed an innovative NTP reactor featuring an angled end for improved accessibility. The central copper electrode, with a 0.59 mm diameter and adjustable length for desired angulation, is coated with zircon powder (ZrSiO4) to ensure stable NTP generation. This central electrode is housed within a stainless steel tube (3 mm internal diameter, 8 mm external diameter, and 100 mm length) with a 27° angle at one end, making it ergonomically suitable for oral applications. NTP generation involves polarizing the reactor electrodes with 13.56 MHz radio frequency signals, using helium gas as a working medium. We introduce plasma-treated water (PTW) as an adjunctive therapy to enhance biofilm eradication within root canals. A synergistic approach combining NTP and PTW is employed and compared to the gold standard (sodium hypochlorite, NaOCl), effectively neutralizing Enterococcus faecalis bacteria, even in scenarios involving biofilms. Moreover, applying NTP in both gaseous and liquid environments successfully achieves bacterial inactivation at varying treatment durations, demonstrating the device’s suitability for medical use in treating root canal biofilms. The proposed NTP reactor, characterized by its innovative design, offers a practical and specific approach to plasma treatment in dental applications. It holds promise in combatting bacterial infections in root canals and oral cavities. Full article
(This article belongs to the Special Issue From Conventional towards Modern Biomaterials in Dentistry)
Show Figures

Figure 1

14 pages, 5256 KiB  
Article
Assessment of Combustion Cavern Geometry in Underground Coal Gasification Process with the Use of Borehole Ground-Penetrating Radar
by Zenon Pilecki, Robert Hildebrandt, Krzysztof Krawiec, Elżbieta Pilecka, Zbigniew Lubosik and Tomasz Łątka
Energies 2023, 16(18), 6734; https://doi.org/10.3390/en16186734 - 21 Sep 2023
Cited by 6 | Viewed by 1455
Abstract
In this study, the shape and size of a combustion cavity with a fracture zone in the gasified coal seam was determined with the use of control boreholes and a ground-penetrating radar (BGPR) test. The underground coal gasification (UCG) field-scale experiment was performed [...] Read more.
In this study, the shape and size of a combustion cavity with a fracture zone in the gasified coal seam was determined with the use of control boreholes and a ground-penetrating radar (BGPR) test. The underground coal gasification (UCG) field-scale experiment was performed in Carboniferous strata in coal seam 501 at a depth of approx. 460 m in the Wieczorek hard coal mine in the Upper Silesian Coal Basin, Poland. After the termination of the UCG reactor, five coring boreholes were drilled to identify the geometry of the resulting combustion cavity and the impact of the UCG process on the surrounding rock mass. Borehole ground-penetrating radar measurements were performed using a 100 MHz antenna in three boreholes with a length of about 40–50 m. This enabled the identification of the boundaries of the combustion cavity and the fracture zone in the coal seam. The fracture zones of rock layers and lithological borders near the control borehole were also depicted. As a result, the cavity was estimated to have a length of around 32 m, a width of around 7 m and a height of around 5 m. The analyses performed with the control boreholes and the BGPR provided sufficient information to determine the geometry of the combustion cavity and the fracture zone. Full article
(This article belongs to the Topic Energy Extraction and Processing Science)
Show Figures

Figure 1

Back to TopTop