Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = rat prostate lobes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1836 KiB  
Article
Bisphenol AF Induces Prostatic Dorsal Lobe Hyperplasia in Rats through Activation of the NF-κB Signaling Pathway
by Sisi Huang, Kaiyue Wang, Dongyan Huang, Xin Su, Rongfu Yang, Congcong Shao, Juan Jiang and Jianhui Wu
Int. J. Mol. Sci. 2023, 24(22), 16221; https://doi.org/10.3390/ijms242216221 - 12 Nov 2023
Cited by 3 | Viewed by 1740
Abstract
Bisphenol AF (BPAF) represents a common environmental estrogenic compound renowned for its capacity to induce endocrine disruptions. Notably, BPAF exhibits an enhanced binding affinity to estrogen receptors, which may have more potent estrogenic activity compared with its precursor bisphenol A (BPA). Notwithstanding, the [...] Read more.
Bisphenol AF (BPAF) represents a common environmental estrogenic compound renowned for its capacity to induce endocrine disruptions. Notably, BPAF exhibits an enhanced binding affinity to estrogen receptors, which may have more potent estrogenic activity compared with its precursor bisphenol A (BPA). Notwithstanding, the existing studies on BPAF-induced prostate toxicity remain limited, with related toxicological research residing in the preliminary stage. Our previous studies have confirmed the role of BPAF in the induction of ventral prostatic hyperplasia, but its role in the dorsal lobe is not clear. In this study, BPAF (10, 90 μg/kg) and the inhibitor of nuclear transcription factor-κB (NF-κB), pyrrolidinedithiocarbamate (PDTC, 100 mg/kg), were administered intragastrically in rats for four weeks. Through comprehensive anatomical and pathological observations, as well as the assessment of PCNA over-expression, we asserted that BPAF at lower doses may foster dorsal prostatic hyperplasia in rats. The results of IHC and ELISA indicated that BPAF induced hyperplastic responses in the dorsal lobe of the prostate by interfering with a series of biomarkers in NF-κB signaling pathways, containing NF-κB p65, COX-2, TNF-α, and EGFR. These findings confirm the toxic effect of BPAF on prostate health and emphasize the potential corresponding mechanisms. Full article
Show Figures

Figure 1

16 pages, 3824 KiB  
Article
Morphometric Analysis of Rat Prostate Development: Roles of MEK/ERK and Rho Signaling Pathways in Prostatic Morphogenesis
by Wen-Yang Hu, Parivash Afradiasbagharani, Ranli Lu, Lifeng Liu, Lynn A. Birch and Gail S. Prins
Biomolecules 2021, 11(12), 1829; https://doi.org/10.3390/biom11121829 - 4 Dec 2021
Cited by 5 | Viewed by 2751
Abstract
The molecular mechanisms underlying prostate development can provide clues for prostate cancer research. It has been demonstrated that MEK/ERK signaling downstream of androgen-targeted FGF10 signaling directly induces prostatic branching during development, while Rho/Rho-kinase can regulate prostate cell proliferation. MEK/ERK and Rho/Rho kinase regulate [...] Read more.
The molecular mechanisms underlying prostate development can provide clues for prostate cancer research. It has been demonstrated that MEK/ERK signaling downstream of androgen-targeted FGF10 signaling directly induces prostatic branching during development, while Rho/Rho-kinase can regulate prostate cell proliferation. MEK/ERK and Rho/Rho kinase regulate myosin light chain kinase (MLCK), and MLCK regulates myosin light chain phosphorylation (MLC-P), which is critical for cell fate, including cell proliferation, differentiation, and apoptosis. However, the roles and crosstalk of the MEK/ERK and Rho/Rho kinase signaling pathways in prostatic morphogenesis have not been examined. In the present study, we used numerical and image analysis to characterize lobe-specific rat prostatic branching during postnatal organ culture and investigated the roles of FGF10-MEK/ERK and Rho/Rho kinase signaling pathways in prostatic morphogenesis. Prostates exhibited distinctive lobe-specific growth and branching patterns in the ventral (VP) and lateral (LP) lobes, while exogenous FGF10 treatment shifted LP branching towards a VP branching pattern. Treatment with inhibitors of MEK1/2, Rho, Rho kinase, or MLCK significantly inhibited VP growth and blocked branching morphogenesis, further supporting critical roles for MEK/ERK and Rho/Rho kinase signaling pathways in prostatic growth and branching during development. We propose that MLCK-regulated MLC-P may be a central downstream target of both signaling pathways in regulating prostate morphogenesis. Full article
(This article belongs to the Special Issue Molecular Signaling in Prostate Development and Prostate Cancer)
Show Figures

Figure 1

23 pages, 5948 KiB  
Article
Suppressive Effect and Molecular Mechanism of Houttuynia cordata Thunb. Extract against Prostate Carcinogenesis and Castration-Resistant Prostate Cancer
by Subhawat Subhawa, Aya Naiki-Ito, Hiroyuki Kato, Taku Naiki, Masayuki Komura, Aya Nagano-Matsuo, Ranchana Yeewa, Shingo Inaguma, Teera Chewonarin, Ratana Banjerdpongchai and Satoru Takahashi
Cancers 2021, 13(14), 3403; https://doi.org/10.3390/cancers13143403 - 7 Jul 2021
Cited by 11 | Viewed by 5948
Abstract
Houttuynia cordata Thunb. (HCT) is a well-known Asian medicinal plant with biological activities used in the treatment of many diseases including cancer. This study investigated the effects of HCT extract and its ethyl acetate fraction (EA) on prostate carcinogenesis and castration-resistant prostate cancer [...] Read more.
Houttuynia cordata Thunb. (HCT) is a well-known Asian medicinal plant with biological activities used in the treatment of many diseases including cancer. This study investigated the effects of HCT extract and its ethyl acetate fraction (EA) on prostate carcinogenesis and castration-resistant prostate cancer (CRPC). HCT and EA induced apoptosis in androgen-sensitive prostate cancer cells (LNCaP) and CRPC cells (PCai1) through activation of caspases, down-regulation of androgen receptor, and inactivation of AKT/ERK/MAPK signaling. Rutin was found to be a major component in HCT (44.00 ± 5.61 mg/g) and EA (81.34 ± 5.21 mg/g) in a previous study. Rutin had similar effects to HCT/EA on LNCaP cells and was considered to be one of the active compounds. Moreover, HCT/EA inhibited cell migration and epithelial-mesenchymal transition phenotypes via STAT3/Snail/Twist pathways in LNCaP cells. The consumption of 1% HCT-mixed diet significantly decreased the incidence of adenocarcinoma in the lateral prostate lobe of the Transgenic rat for adenocarcinoma of prostate model. Similarly, tumor growth of PCai1 xenografts was significantly suppressed by 1% HCT treatment. HCT also induced caspase-dependent apoptosis via AKT inactivation in both in vivo models. Together, the results of in vitro and in vivo studies indicate that HCT has inhibitory effects against prostate carcinogenesis and CRPC. This plant therefore should receive more attention as a source for the future development of non-toxic chemopreventive agents against various cancers. Full article
(This article belongs to the Special Issue Actual Preventive Drugs and Food Factors on Cancer)
Show Figures

Graphical abstract

18 pages, 7244 KiB  
Article
Hexane Insoluble Fraction from Purple Rice Extract Retards Carcinogenesis and Castration-Resistant Cancer Growth of Prostate Through Suppression of Androgen Receptor Mediated Cell Proliferation and Metabolism
by Ranchana Yeewa, Aya Naiki-Ito, Taku Naiki, Hiroyuki Kato, Shugo Suzuki, Teera Chewonarin and Satoru Takahashi
Nutrients 2020, 12(2), 558; https://doi.org/10.3390/nu12020558 - 20 Feb 2020
Cited by 13 | Viewed by 4597
Abstract
Prostate cancer and castration-resistant prostate cancer (CRPC) remain major health challenges in men. In this study, the inhibitory effects of a hexane insoluble fraction from a purple rice ethanolic extract (PRE-HIF) on prostate carcinogenesis and CRPC were investigated both in vivo and in [...] Read more.
Prostate cancer and castration-resistant prostate cancer (CRPC) remain major health challenges in men. In this study, the inhibitory effects of a hexane insoluble fraction from a purple rice ethanolic extract (PRE-HIF) on prostate carcinogenesis and CRPC were investigated both in vivo and in vitro. In the Transgenic Rat for Adenocarcinoma of Prostate (TRAP) model, 1% PRE-HIF mixed diet-fed rats showed a significantly higher percentage of low-grade prostatic intraepithelial neoplasia and obvious reduction in the incidence of adenocarcinoma in the lateral lobes of the prostate. Additionally, 1% PRE-HIF supplied diet significantly suppressed the tumor growth in a rat CRPC xenograft model of PCai1 cells. In LNCaP and PCai1 cells, PRE-HIF treatment suppressed cell proliferation and induced G0/G1 cell-cycle arrest. Furthermore, androgen receptor (AR), cyclin D1, cdk4, and fatty acid synthase expression were down-regulated while attenuation of p38 mitogen-activated protein kinase, and AMP-activated protein kinase α activation occurred in PRE-HIF treated prostate cancer cells, rat prostate tissues, and CRPC tumors. Due to consistent results with PRE-HIF in PCai1 cells, cyanidin-3-glucoside was characterized as the active compound. Altogether, we surmise that PRE-HIF blocks the development of prostate cancer and CRPC through the inhibition of cell proliferation and metabolic pathways. Full article
(This article belongs to the Section Clinical Nutrition)
Show Figures

Graphical abstract

13 pages, 1166 KiB  
Article
The Effect of Zinc, Selenium, and Their Combined Supplementation on Androgen Receptor Protein Expression in the Prostate Lobes and Serum Steroid Hormone Concentrations of Wistar Rats
by Adam Daragó, Michał Klimczak, Joanna Stragierowicz, Olga Stasikowska-Kanicka and Anna Kilanowicz
Nutrients 2020, 12(1), 153; https://doi.org/10.3390/nu12010153 - 6 Jan 2020
Cited by 13 | Viewed by 7338
Abstract
Background: Zinc (Zn) and selenium (Se) play a well-documented role in cancer prevention (e.g., for prostate cancer), and their combined supplementation is often given as a recommended prophylactic agent. The aim of the study was to determine the influence of Zn and/or Se [...] Read more.
Background: Zinc (Zn) and selenium (Se) play a well-documented role in cancer prevention (e.g., for prostate cancer), and their combined supplementation is often given as a recommended prophylactic agent. The aim of the study was to determine the influence of Zn and/or Se supplementation on the androgen receptor (AR) in the prostate lobes and the serum selected hormone concentrations; a hitherto unresearched topic. Methods: Male rats (n = 84) were administered with Zn and/or Se intragastrically for up to 90 days. The effects of administration on the tested parameters were checked after 30 and 90 days of administration and additionally, 90 days after the end of 90 day administration. Results: Zn alone leads to an increase in serum testosterone concentrations, while the protein expression of AR in both parts of the prostate increases. Combined administration of Zn and Se eliminates the effect of Zn, which may suggest that these two elements act antagonistically. Se supplementation alone results in the same level of AR protein expression in administration and 90 days after administration periods. Conclusion: This paper presents the first report of the influence of Zn and/or Se supplementation on the protein expression of AR in the prostate. Our findings seem to indicate that simultaneous supplementation of both elements may be ineffective. Full article
Show Figures

Figure 1

Back to TopTop