Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = railhead defect identification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5403 KiB  
Article
Non-Contact Inspection of Railhead via Laser-Generated Rayleigh Waves and an Enhanced Matching Pursuit to Assist Detection of Surface and Subsurface Defects
by Imran Ghafoor, Peter W. Tse, Javad Rostami and Kim-Ming Ng
Sensors 2021, 21(9), 2994; https://doi.org/10.3390/s21092994 - 24 Apr 2021
Cited by 9 | Viewed by 3835
Abstract
Laser ultrasonic technology can provide a non-contact, reliable and efficient inspection of train rails. However, the laser-generated signals measured at the railhead are usually contaminated with a high level of noise and unwanted wave components that complicate the identification of defect echoes in [...] Read more.
Laser ultrasonic technology can provide a non-contact, reliable and efficient inspection of train rails. However, the laser-generated signals measured at the railhead are usually contaminated with a high level of noise and unwanted wave components that complicate the identification of defect echoes in the signal. This study explores the possibility of combining laser ultrasonic technology (LUT) and an enhanced matching pursuit (MP) to achieve a fully non-contact inspection of the rail track. A completely non-contact laser-based inspection system was used to generate and sense Rayleigh waves to detect artificial surface horizontal, surface edge, subsurface horizontal and subsurface vertical defects created at railheads of different dimensions. MP was enhanced by developing two novel dictionaries, which include a finite element method (FEM) simulation dictionary and an experimental dictionary. The enhanced MP was used to analyze the experimentally obtained laser-generated Rayleigh wave signals. The results show that the enhanced MP is highly effective in detecting defects by suppressing noise, and, further, it could also overcome the deficiency in the low repeatability of the laser-generated signals. The comparative analysis of MP with both the FEM simulation and experimental dictionaries shows that the enhanced MP with the FEM simulation dictionary is highly efficient in both noise removal and defect detection from the experimental signals captured by a laser-generated ultrasonic inspection system. The major novelty contributed by this research work is the enhanced MP method with the developments of, first, an FEM simulation dictionary and, second, an experimental dictionary that is especially suited for Rayleigh wave signals. Third, the enhanced MP dictionaries are created to process the Rayleigh wave signals generated by laser excitation and received using a 3D laser scanner. Fourth, we introduce a pioneer application of such laser-generated Rayleigh waves for inspecting surface and subsurface detects occurring in train rails. Full article
Show Figures

Figure 1

17 pages, 1742 KiB  
Article
Wavelet Scattering and Neural Networks for Railhead Defect Identification
by Yang Jin
Materials 2021, 14(8), 1957; https://doi.org/10.3390/ma14081957 - 14 Apr 2021
Cited by 10 | Viewed by 2590
Abstract
Accurate and automatic railhead inspection is crucial for the operational safety of railway systems. Deep learning on visual images is effective in the automatic detection of railhead defects, but either intensive data requirements or ignoring defect sizes reduce its applicability. This paper developed [...] Read more.
Accurate and automatic railhead inspection is crucial for the operational safety of railway systems. Deep learning on visual images is effective in the automatic detection of railhead defects, but either intensive data requirements or ignoring defect sizes reduce its applicability. This paper developed a machine learning framework based on wavelet scattering networks (WSNs) and neural networks (NNs) for identifying railhead defects. WSNs are functionally equivalent to deep convolutional neural networks while containing no parameters, thus suitable for non-intensive datasets. NNs can restore location and size information. The publicly available rail surface discrete defects (RSDD) datasets were analyzed, including 67 Type-I railhead images acquired from express tracks and 128 Type-II images captured from ordinary/heavy haul tracks. The ultimate validation accuracy reached 99.80% and 99.44%, respectively. WSNs can extract implicit signal features, and the support vector machine classifier can improve the learning accuracy of NNs by over 6%. Three criteria, namely the precision, recall, and F-measure, were calculated for comparison with the literature. At the pixel level, the developed approach achieved three criteria of around 90%, outperforming former methods. At the defect level, the recall rates reached 100%, indicating all labeled defects were identified. The precision rates were around 75%, affected by the insignificant misidentified speckles (smaller than 20 pixels). Nonetheless, the developed learning framework was effective in identifying railhead defects. Full article
(This article belongs to the Special Issue Structural Health Monitoring for Civil Engineering Materials)
Show Figures

Figure 1

16 pages, 2430 KiB  
Article
Research on a Rail Defect Location Method Based on a Single Mode Extraction Algorithm
by Bo Xing, Zujun Yu, Xining Xu, Liqiang Zhu and Hongmei Shi
Appl. Sci. 2019, 9(6), 1107; https://doi.org/10.3390/app9061107 - 15 Mar 2019
Cited by 15 | Viewed by 3303
Abstract
This paper proposes a rail defect location method based on a single mode extraction algorithm (SMEA) of ultrasonic guided waves. Simulation analysis and verification were conducted. The dispersion curves of a CHN60 rail were obtained using the semi-analytical finite element method, and the [...] Read more.
This paper proposes a rail defect location method based on a single mode extraction algorithm (SMEA) of ultrasonic guided waves. Simulation analysis and verification were conducted. The dispersion curves of a CHN60 rail were obtained using the semi-analytical finite element method, and the modal data of the guided waves were determined. According to the inverse transformation of the excitation response algorithm, modal identification under low-frequency and high-frequency excitation was realized, and the vibration displacements at other positions of a rail were successfully predicted. Furthermore, an SMEA for guided waves is proposed, through which the single extraction results of four modes were successfully obtained when the rail was excited along different excitation directions at a frequency of 200 Hz. In addition, the SMEA was applied to defect location detection, and the single reflection mode waveform of the defect was extracted. Based on the group velocity of the mode and its propagation time, the distance between the defect and the excitation point was measured, and the defect location was predicted as a result. Moreover, the SMEA was applied to locate the railhead defect. The detection mode, the frequency, and the excitation method Were selected through the dispersion curves and modal identification results, and a series of signals of the sampling nodes were obtained using the three-dimensional finite element software ANSYS. The distance between the defect and the excitation point was calculated using the SMEA result. When compared with the structure of the simulated model, the errors obtained were all less than 0.5 m, proving the efficacy of this method in precisely locating rail defects, thus providing an innovated solution for rail defect location. Full article
(This article belongs to the Special Issue Ultrasonic Guided Waves)
Show Figures

Figure 1

Back to TopTop