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Abstract: This paper proposes a rail defect location method based on a single mode extraction
algorithm (SMEA) of ultrasonic guided waves. Simulation analysis and verification were conducted.
The dispersion curves of a CHN60 rail were obtained using the semi-analytical finite element method,
and the modal data of the guided waves were determined. According to the inverse transformation
of the excitation response algorithm, modal identification under low-frequency and high-frequency
excitation was realized, and the vibration displacements at other positions of a rail were successfully
predicted. Furthermore, an SMEA for guided waves is proposed, through which the single extraction
results of four modes were successfully obtained when the rail was excited along different excitation
directions at a frequency of 200 Hz. In addition, the SMEA was applied to defect location detection,
and the single reflection mode waveform of the defect was extracted. Based on the group velocity
of the mode and its propagation time, the distance between the defect and the excitation point was
measured, and the defect location was predicted as a result. Moreover, the SMEA was applied to
locate the railhead defect. The detection mode, the frequency, and the excitation method Were selected
through the dispersion curves and modal identification results, and a series of signals of the sampling
nodes were obtained using the three-dimensional finite element software ANSYS. The distance
between the defect and the excitation point was calculated using the SMEA result. When compared
with the structure of the simulated model, the errors obtained were all less than 0.5 m, proving the
efficacy of this method in precisely locating rail defects, thus providing an innovated solution for rail
defect location.

Keywords: rail; ultrasonic guided wave; semi-analytical finite element; single mode extraction
algorithm; defect location

1. Introduction

Ultrasound guided waves are widely used in the non-destructive testing of continuous
welded rails because of their wide coverage and rapid propagation over large distances [1,2].
Compared with simple waveguide structures, such as plates and pipelines, rails have much more
complex cross-sectional structures; thus, they require far more complicated ultrasonic wave modes
for defect detection. With the increase in the frequency, the number of modes increases, making the
research more difficult. However, the analytical method is no longer suitable for the analysis of the
propagation characteristics of ultrasonic guided waves in rails. Therefore, numerical analysis methods
have been broadly introduced, including the Boundary Element Method [3], the Finite Difference
Method [4], the Finite Element Method [5], and the Semi-Analytical Finite Element Method [6].
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Among them, the semi-analytical finite element method reduces the analysis dimensions and has a
higher computational efficiency, thus is commonly adopted in this field of researches.

The time difference between the main wave packet of the reflected wave and the excitation
wave packet in the acquisition signal must be calculated; the position of the defect can be inferred by
multiplying the group velocity of the main modes. Its accuracy is related to the selected detection
mode. Therefore, it is necessary to have a good understanding of the propagation characteristics
of guided waves in rails to select the appropriate modal type, frequency, and excitation mode for
defect detection. D. Alleyne and P. Cawley [7] used two-dimensional Fourier transform to separate
the guided wave modes and calculate the corresponding phase velocities.T. Hayashi et al. [8] utilized
the semi-analytical finite element (SAFE) method to calculate the group velocity and phase velocity
dispersion curves of guided waves in rails at frequencies of 0–100 kHz and carried out experimental
verification. He Cunfu et al. [9] used the vibration mode analysis method to analyze the guided wave
modes at frequencies of 0–50 kHz; the dispersion characteristics and wave structures of five typical
modes were analyzed, and the mode types and frequency ranges suitable for inspecting railhead and
rail bottom defects were obtained. P.W. Loveday and C.S. Long [10–14] analyzed the guided wave
mode data in rails at frequencies of 25 kHz and 35 kHz using the SAFE method and measured along
the rails using a laser vibrometer. A large number of vibration data were obtained, the amplitudes of
each mode were calculated, and the vibration waveforms of distant rails were successfully predicted.
In 2017, P.W. Loveday et al. [15] studied the problem of the mode repulsion and crossing behavior
of the approaching wave number versus frequency curves by analyzing the second derivative of the
eigenvalue with respect to the wave number. These methods analyze the modal characteristics of
guided waves propagating in rails, giving a modal analysis. However, it has never been possible to
separate the reflected guided wave modes of defects to use them for defect location directly.

Meanwhile, a large number of research teams have applied ultrasonic guided waves for defect
detection in waveguide structures. Most of the research results focus on simple cross-sectional
structures such as plates and pipes, while studies on complex structures such as rails remain relatively
rare. C.M. Lee et al. [2] adopted the finite element method to analyze the energy distribution
characteristics of guided waves with different frequencies in rails. The simulation results showed that
a high-frequency guided wave of 200 kHz is concentrated on the upper surface of the railhead, and a
low-frequency guided wave of 30 kHz is distributed through the entire railhead. The guided waves at
low frequencies are more sensitive to the transverse cracks of the railhead, while the guided waves at
high frequencies are good at detecting defects in the shelling. These results have been experimentally
verified. Lu Chao et al. [16] selected transverse and vertical vibration modes to detect oblique cracks on
the rail bottom and analyzed the relationship between the angle of the oblique cracks and the scattering
characteristics of the guided waves. G. Zumpano et al. [17] utilized finite element software to simulate
the rail wear and applied different excitation frequencies. Location analysis shows that the location
error is affected by the excitation frequency. However, as a result of the dispersion characteristics of
ultrasonic guided waves and the frequency aliasing phenomenon, it is impossible to accurately locate
the defect from the group velocity. For this reason, there are relatively few studies on the application of
ultrasonic guided waves in rail defects location. Nevertheless, because of the results related with the
prediction of defect sizes and the identification of defect types, it seems practical to study this method
in terms of defect location.

To locate rail cracks accurately by using ultrasonic guided waves, it is generally necessary to
obtain a single mode propagating in the rail. The research ideas can be roughly divided into two
kinds: one is to directly excite a single mode in the rail, and the other is to extract a single mode
from the signal propagating in the rail. In previous studies, the research group proposed a single
mode excitation method, which can excite a relatively pure single mode in rails [18]. At the same
time, the group also carried out research on the optimal mode selection of rail crack detection in
which a selection model of crack detection mode is created. For a specific crack, the guided wave
frequency and mode suitable for crack detection are quickly selected. In this paper, a single mode
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extraction algorithm (SMEA) is proposed to ascertain the precise location of defects. The method is
as follows: Firstly, the mode and frequency of defect detection are selected and a three-dimensional
model of the defect present in the railhead is established. The simulation analysis is carried out using
the three-dimensional finite element analysis software ANSYS. The defect models of the railhead
are stimulated with low-frequency (200 Hz) and high-frequency (60 kHz) signals. The content of
each mode of guided wave is quantitatively analyzed, and the position of the railhead defect is
calculated according to the single mode extraction method. The semi-analytical finite element method
and accurate modal identification method are described in Section 2. In Section 3, the SMEA and
verification process are discussed. The defect location method and simulation results are described in
Section 4. Conclusions are given in Section 5.

2. An Accurate Modal Identification Method

2.1. Basic Characteristics of Ultrasonic Guided Waves in Rails

As a result of the complex cross-sectional structure of rails, the number of guided wave modes
propagating in a rail is large. To detect the internal defects of rails based on ultrasonic guided wave
technology, the most important thing is to grasp the fundamental characteristics of ultrasonic guided
waves in rails, such as the frequency, wave number, phase velocity, group velocity, mode shape, and
other information, so as to analyze the propagation characteristics of the guided waves. The dispersion
curves of ultrasonic guided waves in rails can be obtained with the semi-analytical finite element
method. Taking the rail laid on Beijing–Shanghai high-speed railway in China as the research
object [19], the finite element method was used to discretize the cross-section. It was assumed
that the guided waves propagate along the longitudinal direction of the rail in the form of harmonic
vibrations. The wave equation was established based on the finite element method. The eigenvalues
and eigenvectors were obtained by solving the eigenvalue equation. The eigenvalues contain the
information of frequencies and wave numbers, and the eigenvectors contain the information of
mode shapes. Thus, the dispersion curves and mode shapes of guided waves in the CHN60 rail
were obtained.

First, the coordinate system of the CHN60 rail was established, as shown in Figure 1.

Figure 1. CHN60 rail coordinate system.

The wave number of guided waves is ξ and the frequency is ω. The displacement, stress, and strain
of each node in the rail can be expressed as Equation (1).

u =
[
ux uy uz

]T

σ =
[
σx σy σz σyz σxz σxy

]T
(1)
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ε =
[
εx εy εz γyz γxz γxy

]T

εx, εy, and εz are normal strains, and γyz, γxz, and γxy are shear strains. In the elastic range of
materials, stress and strain conform to Hooke’s Law. It can be expressed as σ = Cε, where C is the
elastic constant matrix of a rail.

The relationship between the strain and displacement at any node in the rail is expressed in a
matrix form as follows:

ε =
[

Lx
∂u
∂x + Ly

∂u
∂y + Lz

∂u
∂z

]
(2)

Therefore, in the form

Lx =



1 0 0
0 0 0
0 0 0
0 0 0
0 0 1
0 1 0


Ly =



0 0 0
0 1 0
0 0 0
0 0 1
0 0 0
1 0 0


Lz =



0 0 0
0 0 0
0 0 1
0 1 0
1 0 0
0 0 0


(3)

The SAFE method was used to get the dispersion curves of the ultrasonic guided waves which
propagate in the form of harmonics in the longitudinal direction of the rail. Therefore, only the finite
element discretization of the rail cross-section was needed. The displacement of any discrete node in
the rail can be calculated as shown in Equation (4), where x is the longitudinal coordinate of the rail.

u(x, y, z, t) =

ux(x, y, z, t)
uy(x, y, z, t)
uz(x, y, z, t)

 =

Ux(y, z)
Uy(y, z)
Uz(y, z)

 e−i(ξx−ωt) (4)

The triangular element was selected to discretize the cross-section of the CHN60 rail,
and 177 nodes and 255 elements were obtained, as shown in Figure 2. Seven nodes are circled in
the figure to illustrate the signal extraction nodes in the subsequent modal identification method.

Figure 2. Discretization of the cross-section of the CHN60 rail.

The rail cross-section was discretized by triangular elements. The displacement of any particle in
an element can be obtained by the displacement of the nodes and the shape function. The strain and
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stress vectors of the element can also be expressed by the displacement of the nodes. According to
the Hamilton principle, the dynamic equation of guided waves propagating in a CHN60 rail can be
obtained by calculating the strain energy and potential energy at any point simultaneously [20]:[

K1 + iξK2 + ξ2K3 − ω2M
]

M
U = 0 (5)

In this form, U contains the displacements of the nodes in x, y, and z directions. M is the mass
matrix of the nodes. ξ and ω are the wave number and angular frequency, respectively, and K1, K2,
and K3 are the stiffness matrices.

Given the frequency ω, the eigenvalue of Equation (5) is the wave number ξ of the guided waves,
and the eigenvector contains the mode shapes of the rail. Normalized processing can be used to plot
the corresponding mode shapes of the guided waves. The modes with pure imaginary or complex
wave numbers are not considered here because these modes will exponentially decay as the distance
increases and cannot propagate. The dispersion curves of the phase velocity and group velocity of
ultrasonic guided waves in the CHN60 rail are plotted, as shown in Figure 3.

(a) (b)
Figure 3. (a) Phase velocity; and (b) group velocity dispersion curves.

The dispersion curves of the phase velocity and group velocity are shown in the figure. At the
same frequency, the rail has several propagable guided wave modes, and at the higher the frequency,
it has more guided wave modes.

2.2. Excitation Response Analysis of Rails

On the basis of the excitation response analysis method, the vibration signals of a non-defective
rail can be calculated at any point. Firstly, the system function model U of the rail should be
obtained. Then, the frequency domain signal F̂( f ) of the excitation function signal v1(t) can be
obtained.Thereafter, the excitation response result can be calculated V = U × F̂( f ). Finally, the inverse
Fourier transform of V can be determined, which is the excitation response of the time domain
vibration signal.

The system function model of the rail [21] is shown in Equation (6), where m is the mode number
(m = 1, 2, . . . , M). Ωm is the amplitude and phase parameters of mode m. UL

m and UR
m are the left

eigenvector and the right eigenvector of mode m. p̃ is the amplitude of the excitation signal. xs and x
are the longitudinal coordinates of the excitation point and the receiving point, and URup

m is the mode
shape of mode m.

U(y, z, f ) =
M

∑
m=1

ΩmURup
m e−i[ξm(x−xs)] (6)
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In this form, the parameters are expressed as follow:

Ωm = −UL
m p̃

Bm

Bm = UL
mBUR

m

B =

[
K1 − ω2M 0

0 −K3

]
The result of the frequency response analysis of the excitation response V( f ) can be expressed by

Equation (7).

V(y, z, f ) = F̂( f ) · U(y, z, f )

= F̂( f ) ·
M

∑
m=1

ΩmURup
m e−i[ξm(x−xs)] (7)

The inverse Fourier transform result is the time domain vibration signal of the node.

2.3. Modal Identification

In Figure 4, T is the transmitter of the guided waves, R is the receiver of guided waves, X is the
location of a rail defect, and the arrows show the propagation paths of the guided waves. Path 1 is the
direction of backward propagation after exciting the guided wave. Paths 2 and 3 are the directions of
transmission and reflection after the guided wave meets the crack. According to the propagation time
of the reflected wave (Path 3) and the group velocity of the main modes, the guided wave propagating
distance of Path 3 can be calculated to locate the defect.

Figure 4. Schematic diagram of defect location.

To solve the problem of defect location, it is very important to analyze the mode propagation and
reflection of guided waves in defective rails. The amplitude of each mode in a complete rail can be
calculated using the excitation response algorithm, as described in Section 2.2, but the mechanisms
involved in the interaction between modes and defects are still difficult to understand. Therefore,
a method that can accurately analyze the direct mode and reflection mode of a defect is needed.
In fact, the accurate modal identification method used in this paper is the inverse transformation of
the excitation response analysis method.

2.3.1. Theoretical Derivation

According to the excitation response analysis method, the vibration displacement of any point
of the rail is equal to the superposition of all the propagable modes’ vibration displacements at that
point. However, when there are both direct and reflected waves in the rail, the vibration displacement
at any point is the superposition of the direct and reflected waves, that is, the superposition of all
direct modes and all reflected modes at that point. Therefore, when considering the influence of the
reflection wave caused by the defect, the expression of the excitation response of the node is in the form
of Equation (8), in which the upper line “-” represents the relevant parameters of the reflected modes.
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V(y, z, f ) = F̂( f ) · U(y, z, f )

= F̂( f ) · (
M

∑
m=1

ΩmURup
m e−i[ξm(x−xs)] +

M

∑
m=1

Ω̄mŪRup
m e−i[ξ̄m(x−xs)]) (8)

If we let Ω =
[
Ωm Ω̄m

]
, then with to the sampling results of a simulation or an experiment,

the frequency domain signal V( f ) of any N points’ vibration displacement on the rail can be obtained.
By substituting the wave number, the mode shape, the distance between the sampling point and
excitation point, and the frequency domain signals of the excitation signal at the corresponding
frequency of each mode into Equation (8), the parameters Ω including the amplitude and phase of
each mode can be achieved. It should be noted that the number of sampling points should be enough
to ensure that the solution can be obtained relatively accurately, that is, N > 2M.

2.3.2. Simulation Analysis

Due to the excessive modes of high frequency guided waves, the results of modal identification
are complex and difficult to study. Therefore, in the process of research, we first judged the correctness
of the algorithm by studying 200 Hz low-frequency guided waves, and then increased the frequency
to ultrasound band to study the modal identification results of high-frequency guided waves.

Firstly, the rail model with a railhead defect was established, and the excitation response of the
rail was simulated using ANSYS. The rail was then excited by signals at a low center frequency of
200 Hz and a high center frequency of 60 kHz. The rail and defect models are shown in Figure 5.

Figure 5. Rail model with head defect.

(1) Low center frequency of 200 Hz.
The length of the rail model was 200 m, and the defect was located at 120 m and had a length of

70 mm, width of 50 mm, and depth of 20 mm. The excitation signal was a sinusoidal wave modulated
using Hanning window, with a center frequency of 200 Hz and five cycles. The excitation position was
the center point of the side of the railhead at 90 m. A total of 32 sections were sampled from 100 m to
101.55 m. Seven nodes were selected for each section, as shown in Figure 2.

At 200 Hz, there were only four modes in the rail: the horizontal bending mode, the vertical
bending mode, the torsional mode, and the extensional mode. The collected signals were substituted
into the modal identification in Equation (8), which is extended into the form of Equation (9).
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F̂( f )



URup
1,1 e−i[ξ1(x1−xs )] . . . URup

1,4 e−i[ξ4(x1−xs )] ŪRup
1,1 e−i[ξ̄1(x1−xs )] . . . ŪRup

1,4 e−i[ξ̄4(x1−xs )]

URup
1,1 e−i[ξ1(x2−xs )] . . . URup

1,4 e−i[ξ4(x2−xs )] ŪRup
1,1 e−i[ξ̄1(x2−xs )] . . . ŪRup

1,4 e−i[ξ̄4(x2−xs )]

...
...

...
...

URup
1,1 e−i[ξ1(x32−xs )] . . . URup

1,4 e−i[ξ4(x32−xs )] ŪRup
1,1 e−i[ξ̄1(x32−xs )] . . . ŪRup

1,4 e−i[ξ̄4(x32−xs )]

...
...

...
...

URup
7,1 e−i[ξ1(x1−xs )] . . . URup

7,4 e−i[ξ4(x1−xs )] ŪRup
7,1 e−i[ξ̄1(x1−xs )] . . . ŪRup

7,4 e−i[ξ̄4(x1−xs )]

URup
7,1 e−i[ξ1(x2−xs )] . . . URup

7,4 e−i[ξ4(x2−xs )] ŪRup
7,1 e−i[ξ̄1(x2−xs )] . . . ŪRup

7,4 e−i[ξ̄4(x2−xs )]

...
...

...
...

URup
7,1 e−i[ξ1(x32−xs )] . . . URup

7,4 e−i[ξ4(x32−xs )] ŪRup
7,1 e−i[ξ̄1(x32−xs )] . . . ŪRup

7,4 e−i[ξ̄4(x32−xs )]





Ω1

Ω2

...
Ω4

Ω̄1

Ω̄2

...
Ω̄4


=



V1,1( f )
V1,2( f )

...
V1,32( f )

...
V7,1( f )
V7,2( f )

...
V7,32( f )


(9)

The magnitudes of each mode and the corresponding reflection mode (i.e., the modulus value of
Ω) and the amplitude reflection coefficients after calculation are shown in Table 1.

Table 1. Vertical excitation mode identification results of defective rail (at a frequency of 200 Hz).

Mode Direct Wave Reflected Wave Amplitude Reflection Coefficient

Horizontal bending mode 3.20 × 10−3 3.04 × 10−4 9.5 × 10−2

Vertical bending mode 1.89 × 10−2 3.52 × 10−3 0.19
Torsional mode 1.17 × 10−2 4.58 × 10−4 3.9 × 10−2

Extensional mode 4.94 × 10−4 5.95 × 10−4 1.2

It shows that the vertical bending mode had the highest amplitude among the direct modes,
which was the main mode to be stimulated in this way. The amplitude of the extensional mode
was far smaller than the amplitudes of the other modes and could be seen as zero, thus it was not
considered. Meanwhile, the amplitude reflection coefficient was obtained by dividing the amplitude of
the reflected mode from that of the direct mode, and the vertical bending mode was the most sensitive
mode to the transverse crack of the railhead. The results of the modal identification algorithm were
used to estimate the vibration of the railhead at a distance of 20 m away from the excitation point
and were compared with the simulation sampling results at the same point, as shown in Figure 6a.
The two methods’ results almost coincide, which proves the validity of the algorithm in the modal
identification of guided waves at a low frequency.

(2) High center frequency of 60 kHz
The length of the rail model was 25 m, and the defect was located at 20 m, with a length of 70 mm,

a width of 50 mm, and a depth of 20 mm. A 10-cycle sinusoidal wave with a center frequency of
60 kHz was applied to excite the railhead at 12 m vertically, and 32 sections were sampled between
12.3 m and 13.23 m. The nodes were selected as above.

At 60 kHz, there were 35 modes in the rail, thus it was impossible to simply distinguish the
types of modes. For this reason, they are numbered in the order of phase velocity from small to large.
Using the signal with a center frequency of 60 kHz to excite the railhead, the magnitude and reflection
coefficients of each mode and the corresponding reflection modes were obtained (as shown in Table 2),
after the application of the accurate modal identification method.

In Table 2, it can be seen that, among the direct modes, mode No. 7, No. 8, and No. 9 had
relatively high amplitudes, as they were the main modes stimulated in this way. At the same time,
in the reflection mode, mode No. 7, with the largest amplitude and the highest reflection coefficient,
was the most sensitive mode to the transverse crack of the railhead. Similarly, the vibration of the
railhead 1.5 m away from the excitation point was estimated using the calculation results in Table 2,
and compared with the simulation sampling results at that point, as shown in Figure 6b. The two
main wave packets almost coincide, which shows that the algorithm is also applicable to the modal
identification of guided waves at a high frequency.
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(a) (b)
Figure 6. Comparison between the simulation results and prediction results: (a) 200 Hz; and (b) 60 kHz.

Table 2. Results of accurate modal identification (at a frequency of 60 kHz).

Mode Number Direct Wave Reflected Wave Amplitude Reflection Coefficient

1 0.39 0.003 0.008
2 0.18 0.009 0.050
3 0.03 0.001 0.033
4 0.29 0.007 0.024
5 0.33 0.003 0.009
6 0.21 0.008 0.038
7 1.25 0.078 0.062
8 1.46 0.004 0.003
9 1.36 0.004 0.003

10 0.52 0.002 0.004
11 0.08 0.001 0.013
12 0.23 0.002 0.009
13 0.40 0.003 0.043
14 0.67 0.001 0.001
15 0.07 0.003 0.043
16 0.06 0.001 0.017
17 0.96 0.005 0.005
18 0.04 0 0
19 0.37 0.006 0.016
20 0.02 0.001 0.050
21 0.29 0.005 0.017
22 0.15 0.002 0.013
23 0.06 0.001 0.017
24 0.16 0.003 0.019
25 0.23 0.008 0.035
26 0.28 0.001 0.004
27 0.36 0.002 0.006
28 0.41 0.001 0.002
29 0.42 0.002 0.005
30 0.03 0.001 0.033
31 0.32 0 0
32 0.42 0 0
33 0.92 0 0
34 0.02 0 0
35 0.11 0 0
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3. Single Modal Extraction Algorithm

When ultrasonic guided waves propagate in rails, dispersion occurs. That is to say, the number of
the guided wave modes propagating in the rails will increase with the increase in excitation frequency;
furthermore, the propagating velocity of each mode is different. With the increase in propagating
distance, the wave packets of each mode will gradually stagger and overlap. Therefore, they cannot
be distinguished, and so the group velocity cannot be used to locate defects. To solve this problem,
an SMEA based on the accurate modal identification method is proposed.

As mentioned above, the vibration displacement at any point on the rail is the superposition of
the vibration displacement of all modes at this point. Conversely, the vibration displacement of each
mode at any point can be split by the total displacement of the point.

The amplitude and phase Ωn of mode n can be obtained with the accurate modal identification
algorithm, and the vibration displacement generated by mode n at the longitudinal coordinate x can
be expressed by Equation (10).

Vn(y, z, f ) = F̄f · ΩnURup
n e−i[ξn(x−xs)] (10)

According to Equation (10), the vibration displacement of mode n at this point in a frequency
domain is calculated, and the time domain waveform of the mode is obtained by inverse Fourier
transform. To verify the correctness of the method, the following simulations were carried out.

A non-defective three-dimensional rail model with a length of 200 m was established.
The vibrations of the railhead along the rail in a longitudinal, transverse, and vertical excitation
direction were simulated using ANSYS. To show the results clearly, the excitation signal was selected
as a low-frequency signal with a center frequency of 200 Hz and five cycles, which has only four
modes. The modal amplitude of each mode at the 200 Hz frequency point after mode analysis is shown
in Figure 7.

Figure 7. Modal identification results under three excitation conditions (200 Hz).

According to Figure 7, when the rail was excited longitudinally, the proportion of the extensional
mode was higher. When the rail was excited horizontally, the proportions of the horizontal bending
mode and torsion mode were higher. When the rail was excited vertically, the proportions of the
vertical bending mode and torsion mode were higher.

Using the SMEA and choosing the frequency range 100–300 Hz, the total waveform at 30 m and
four single-mode waveforms were obtained, respectively, as shown in Figure 8a–c.

It can be seen clearly in the figure that only the extensional mode existed when the railhead was
excited longitudinally. The horizontal bending and torsion modes existed when the railhead was
excited horizontally, and the vertical bending and torsion modes existed when the railhead was excited
vertically. The results are consistent with the accurate identification results.
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(a) (b) (c)
Figure 8. SMEA results: (a) longitudinal excitation; (b) horizontal excitation; and (c) vertical excitation.

4. Defect Location

The flow chart of the defect location method is shown in Figure 9.

Figure 9. Defect location algorithm flow chart.

As can be seen above, the primary task of defect location is to select the mode, frequency,
and excitation conditions with which to perform the defect detection. At the same time,
a three-dimensional model of the rail with defects must be established. The excitation response
of the rail is then simulated by ANSYS, and the vibration displacements of a series of points on the
rail are obtained, so as to simulate the signals received by an experiment. According to the results
of the modal identification and the SMEA, the reflected signals of the selected modes are plotted.
Thereafter, the group velocity and the propagation time of the reflected mode are obtained, so that
the defect location can be achieved. The following section takes a transverse crack in a railhead as an
example to explain the process of defect location.

4.1. Selection of Mode, Frequency, and Excitation Conditions for Defect Detection

The following three principles are used to select the mode, frequency, and excitation conditions
for railhead defect detection:

• The mode that only vibrates in the railhead with almost no movement of rail waist and rail bottom
and which has a large group velocity is selected.
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• The frequency band with better non-dispersive characteristics is selected.
• The mode with the largest amplitude is selected as the excitation condition.

The detection frequency and mode were selected in the frequency range 20–70 kHz. According to
Equation (5), the mode shapes of the rail in this frequency range were calculated and drawn.
The frequency of 60 kHz was taken as an example, as shown in Figure 10. Among them, the modes
in which only the railhead vibrated with almost no movement in the rail waist and rail bottom were
modes No. 7 and No. 14.

Figure 10. Rail mode shapes (60 kHz).

According to Figure 3b, the group velocity dispersion curves of modes No. 7 and No. 14 were
extracted, as shown in Figure 11.

Figure 11. Group velocity dispersion curves of modes No. 7 and No. 14.
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In Figure 11, we can see that mode No. 7 had almost the same group velocity and excellent
non-dispersive characteristics in the proximity of 60 kHz. The group velocity of mode No. 14 was
greatly influenced by the frequency and the non-dispersion characteristic was poor. Therefore, mode
No. 7 at 60 kHz frequency was selected to detect the defect in the railhead.

A complete three-dimensional rail model with a length of 15 m was established. A simulation
whereby the railhead was excited at 7 m along the longitudinal, transverse, and vertical directions by
ANSYS was performed. The excitation signal was a sinusoidal wave modulated by Hanning window
at the center frequency of 60 kHz with 10 cycles. The co-directional displacement signals between
8 m and 9 m were collected, and the amplitude of each mode under three excitation conditions were
calculated using the accurate modal identification method, as shown in Figure 12.

As shown in Figure 12, the highest amplitude for the selected mode is that of vertical excitation.
Therefore, vertical excitation was selected.

In summary, mode No. 7 was selected as the detection mode, 60 kHz was selected as the frequency,
and vertical excitation was selected as the excitation condition.

Figure 12. Modal identification results under three excitation conditions (60 kHz).

4.2. Simulation Analysis of Defect Location

According to the results in Section 4.1, the rail with a defect in the railhead was stimulated.
As shown in Figure 13, the rail length was 25 m; T represents the excitation point, which was located at
12 m along the rail. X represents the defect position, and the distance between the excitation point and
X was l = 8 m. The simulation condition used was the same as the high-frequency excitation presented
in Section 2.3.2. Table 2 shows the results of the modal identification.

Figure 13. Schematic diagram of rail defect location.

The spacings d between the sampling points and the excitation point were 1.5 m, 4.5, m and 6 m,
and the collected signal waveforms are shown in Figure 14a–c.
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(a) (b) (c)
Figure 14. Acquisition waveforms for all modes with distances of: (a) 1.5 m; (b) 4.5 m; and (c) 6 m
between excitation points and sampling points.

As a result of the complex propagation modes of guided waves in rails, only the first direct wave
packet could be distinguished from the waveform. It was impossible to pick out which wave packet in
the red circle was the reflected wave packet, and it was also impossible to know for certain which mode
or modes each wave packet corresponded to; therefore, it was difficult to give the specific propagation
time and the accurate mode group velocity. For this reason, the defect could not be precisely located.

According to the SMEA, the reflected mode waveform of mode No. 7 at 4.5 m from excitation
point was calculated in the frequency range 42–78 kHz. As shown in Figure 15b, the peak time t1 of the
wave packet was 3.966 × 10−3 s. With the peak time t0 of the excitation wave packet (8.333 × 10−5 s)
and the group velocity v0 of mode No. 7 (3148.2 m/s), it was possible to calculate the distance between
the defect and the excitation point using Equation (11).

l =
(t1 − t0) ∗ v0 + d

2
(11)

The actual interval was 8 m and the calculation result was 8.36 m, giving an error of only 0.36 m.
The reflection mode waveforms of mode No. 7 at 1.5 m and 6 m away from the excitation point

were extracted, as shown in Figure 15a,c. The distances between the calculated defect and the excitation
point were 8.33 m and 8.39 m. Therefore, the errors were 0.33 m and 0.39 m, respectively, both less
than 0.5 m, and thus meeting the positioning accuracy requirements.

(a) (b) (c)
Figure 15. The reflection waveforms of mode No. 7 at a distance from the excitation point of: (a) 1.5 m;
(b) 4.5 m; and (c) 6 m.

5. Conclusions

A rail defect location method based on an SMEA of ultrasonic guided waves was proposed.
The dispersion curves of a CHN60 rail were calculated using the semi-analytical finite element method,
the mode shapes of the guided waves were calculated, and the actual received signals were predicted
using the simulation data provided by ANSYS. Furthermore, accurate modal identification was
achieved using the inverse transformation of the excitation response method, and the amplitude
of each mode of the guided waves propagating in the rail was obtained. The rail displacement
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curves excited by the signals at a low frequency of 200 Hz and high frequency of 60 kHz were
correctly predicted.

According to the modal identification results, an SMEA was proposed. The single mode extraction
results at 200 Hz were calculated and the results were consistent with those of the modal identification.
Thereafter, taking a railhead defect as an example, according to certain selection principles, mode No. 7
with a signal frequency of 60 kHz and a vertical excitation condition were selected. The reflective
modes of mode No. 7 at 1.5, 4.5, and 6 m from the excitation point of the railhead defect were extracted
using the SMEA, and the distance between the rail defect and excitation point was obtained according
to the time difference. The errors in location were 0.33, 0.36, and 0.39 m, respectively, which all fall
within the 0.5 m set as the detection requirements. Hence, it can be said that the precise determination
of the rail defect was accomplished.

Author Contributions: Conceptualization, B.X. and X.X.; methodology, X.X. and L.Z.; software, B.X. and H.S.;
validation, Z.Y., L.Z. and H.S.; investigation, B.X.; resources, Z.Y.; writing—original draft preparation, B.X.; and
writing—review and editing, B.X., X.X. and L.Z.

Funding: This research was funded by the National Key Research and Development Program of China
(2016YFB1200401)

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

SAFE Semi-analytical finite element
SMEA Single mode extraction algorithm

References

1. Loveday, P.W. Guided wave inspection and monitoring of railway track. J. Nondestruct. Eval. 2012,
31, 303–309. [CrossRef]

2. Lee, C.; Rose, J.L.; Cho, Y. A guided wave approach to defect detection under shelling in rail. NDT E Int.
2009, 42, 174–180. [CrossRef]

3. Rose, J.L.; Zhu, W.; Cho, Y. Boundary element modeling for guided wave reflection and transmission factor
analyses in defect classification. In Proceedings of the 1998 IEEE Ultrasonics Symposium, Sendai, Japan,
5–8 October 1998; Volume 1, pp. 885–888.

4. Harker, A.H. Numerical modelling of the scattering of elastic waves in plates. J. Nondestruct. Eval. 1984,
4, 89–106. [CrossRef]

5. Moser, F.; Jacobs, L.J.; Qu, J. Modeling elastic wave propagation in waveguides with the finite element
method. NDT E Int. 1999, 32, 225–234. [CrossRef]
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